

DEPARTMENT OF NANOSCIENCE AND TECHNOLOGY

M.Sc., CHEMISTRY (SPECIALIZATION NANOSCIENCE & TECHNOLOGY) [Choice Based Credit System (CBCS)] [For the candidates admitted from the academic year 2019-2020]

CONTENTS

I. Name of the Programme II. Objectives of the Programme III. Eligibility for admission IV. Duration of the Programme V. Courses in the Programme VI. Project **VII.Semesters** VIII. Credits IX. Teaching Methodologies X. Examinations XI. Condonation XII.Question Paper Pattern XIII. Evaluation XIV. Passing Minimum XV. Grading XVI. Conferment of the Master's Degree XVII. Ranking: University Rank Examination XVIII. Grievance Redressal Committee XIX. Transfer of Credits XX. Revision of Regulations and Curriculum XXI. Commencement of this regulation XXII. Transitory Provision

I. NAME OF THE PROGRAMME

The programme is named **Branch IV** (b) - M.Sc. Chemistry-Specialization in Nanoscience and Technology . The syllabus for this programme is framed under the rules of the Choice Based Credit Semester System (CBCS) of this University and both Core- and Elective courses were incorporated as its components. The CBCS enables the students to select variety of subjects as per their interest and requirement. Acquiring knowledge in the related fields is advantageous to the students. Fast learners can earn more credits than the stipulated minimum of 90 credits.

II. OBJECTIVES OF THE PROGRAMME

All basic life forms on Earth depend greatly on chemistry for their survival, including us. Chemistry is a big part of your everyday life. We find chemistry in daily life in the foods we eat, the air we breathe, our soap, our emotions and literally every object we can see or touch. Without chemistry it would be extremely hard for us to live. We need chemistry and chemicals for everything we do.

Chemistry is a pervasive subject. All the branches of science need chemistry. It is an experimental science and students need to train in practicals to get expertise in doing fine experiments and handle sophisticated instruments. Along with the data obtained its statistical analysis is also required to establish authenticity in the fields like environmental science, space chemistry and biotechnology. There are immense potentialities for chemistry and post graduates to undertake advanced research or in Industries as skilled chemists. It is important for the educators to provide a platform for the student community to study in detail the basics and advancements in chemistry. Hence our goal in floating the M.Sc programme in Chemistry-Specialization in Nanoscience and Technology is to educate the undergraduate students of chemistry in the fascinating fields of chemistry in an effective manner. This syllabus presents essential contents in a detailed, clear and direct way.

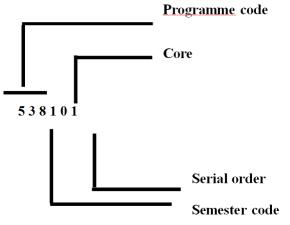
The major objectives of M.Sc. Chemistry-Specialization in Nanoscience and Technology are:

- To provide, thorough well designed studies of theoretical and experimental chemistry, a worthwhile educational experience for all students
- To acquire deep knowledge in fundamental aspects of all branches of chemistry
- To acquire basic knowledge in the specialized thrust areas like Photoelectrochemistry, Materials Chemistry, Chemistry in Nanoscience and Technology etc. and
- To develop abilities and skills that:
 - > are relevant to the study and practice of science,
 - ➤ are useful in everyday life,
 - > are encouraging efficient and safe practice and effective communication.
- To develop attitudes relevant to science such as:
 - Concern for accuracy and precision,
 - ➢ Objectivity,
 - ➤ Integrity,
 - \succ Enquiry,
 - Initiative and
 - ➢ Inventiveness.

III. ELIGIBILITY FOR ADMISSION

A candidate who is a B.Sc. graduate of this University or any recognized University in the main subject/subjects as given below or who has passed an examination accepted by the Syndicate as equivalent there to is eligible for admission to M.Sc. Chemistry- Specialization in Nanoscience and Technology programme.

 M.Sc. Chemistry-Specialization in
 B.Sc., Degree Examination with Chemistry / Special Chemistry / Industrial Chemistry / Textile Chemistry / Electrochemistry / Applied Chemistry / any other specialization in Chemistry as main subject of study and any two of Mathematics, Physics, Botany, Zoology, Computer Application, Microbiology, Textile Chemistry, Electrochemistry, Applied Chemistry as ancillary subjects


The admission is subject to the prevailing rules and regulations for PG admission of this University. The candidate has to undergo this programme in the Department of Nanoscience and Technology, Alagappa University and complete all the examinations prescribed under the four semesters to qualify for this degree.

IV. DURATION OF THE PROGRAMME

The programme is for a period of two years. Each year shall consist of two semesters viz. Odd and Even semesters. Odd semesters shall be from July to November and even semesters shall be from December to April. There shall be 90 working days which shall comprise 540 teaching clock hours for each semester (exclusive of the days for the conduct of University end semester examination).

V. COURSES IN THE PROGRAMME

M.Sc. Chemistry-Specialization in Nanoscience and Technology programme consists of number of courses. The term 'course' is applied to indicate a logical part of the subject matter of the programme and invariably equivalent to the subject matter of a "paper" in the conventional sense.

For elective, the fourth digit is '5'.

Some Course Course Title			Cre	Hrs	CIA	ESE	Total	
Sem	Code	Course Title	dit	/W	Marks	Marks	Marks	
	538101	Inorganic Chemistry -I		5	5	25	75	100
	538102	Organic Chemistry -I		5	5	25	75	100
Ι	538103	Physical Chemistry -I		5	5	25	75	100
1	538107	Inorganic Chemistry Practical		4	8	25	75	100
		Major Elective -I		4	4	25	75	100
		Library /MOOCs		*	03			
			Total	23	30	125	375	500
	538201	Inorganic Chemistry-II		5	5	25	75	100
	538202	Organic Chemistry -II		5	5	25	75	100
II	538203	Physical Chemistry -II		5	5	25	75	100
11	538207	Organic Chemistry Practical		4	8	25	75	100
		Major Elective- II		4	4	25	75	100
		Non-major Elective- I		2	3	100	-	100
Total		25	30	125	375	600		
	538301	Inorganic Chemistry –III		5	5	25	75	100
	538302	Organic Chemistry -III		5	5	25	75	100
	538303	Physical Chemistry -III		5	5	25	75	100
III	538307	Physical Chemistry Practical		4	8	25	75	100
	540703	Non-major Elective- II		2	3	25	75	100
	538506	Major Elective- III		4	4	25	75	100
		Library /MOOCs/Career guidance			*			
			Total	25	30	125	375	600
IV	538507	Major Elective- IV		4	4	25	75	100
1 1	538999	Project Work -Report & Viva-voce		13	26	25	75	100
			Total	17	30	75	225	200
		GRAND TOTAL		90	120	450	1425	1900

M.Sc. CHEMISTRY-SPECIALIZATION IN NANOSCIENCE AND TECHNOLOGY

ELECTIVE COURSES

Course Code	Course Title
538501	Introduction to Nanoscience and Technology
538502	Environmental Green Chemistry
538503	Synthesis and Characterization Techniques of nanomaterials
538507	Nanocomposites
538506	Application of Nanotechnology

*Extra hours and extra credit

SUPPORTIVE COURSES FOR OTHER DEPARTMENTS*

SI. No.	Course Code	Course Title	Credit	Hou rs/ week	CIA Marks	ESE Marks	Total
1.	538701	Physics and Chemistry of Nanomaterials	2	3	25	75	100
2.	538702	Application of Spectroscopy in Materials Chemistry	2	3	25	75	100

*Depending upon the requirement, any one of the above courses will be floated in a semester.

VI. PROJECT

Each candidate shall be required to take up a Project Work and submit the report at the end of the second year. The Head of the Department shall assign the Guide who in turn will suggest the Project Work to the student in the beginning of the second year. One typed copy of the Project Report shall be submitted to the University through Head of the Department on or before the date fixed by the University.

The project report will be evaluated by an Internal Examiner and an External, nominated by the University. The candidate concerned will have to defend his project in a Viva-Voce examination.

VII. SEMESTERS

An Academic year is divided into two **semesters.** In each semester, courses are offered in 18 teaching weeks including the duration of conduct of internal examination. Each week has 30 working hours spread over 5 days a week.

VIII. CREDITS

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. For instance, a four hour course is assigned four credits, three hour course is assigned three credits. However, in no instance the credits of a course can be greater that the hours allotted it. The total minimum credits, required for completing a PG programme is 90. The details of credits for individual components are given in Table 1.

Study Components	Number of courses	Credit per Courses	Total Credits	Total marks
1. Core Courses - Theory	9	5	45	900
2. Core Courses - Practicals	3	4	12	300
4. Project work (Core)	1	9	9	100
5. Elective Courses	4	4	16	400
6. Supporting course (IDC)	2	2	4	200
7. MOOCs/career guidance etc				
Total	19	24	90	1900

 Table 1. Details on the number of courses and credits per course

IX. TEACHING METHODOLOGIES

The classroom teaching would be through conventional lectures and use of Power Point presentations and smart classroom facilities. The lecture would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

In the laboratory, instruction would be given for the experiments followed by demonstration and finally the students have to do the experiments individually.

Periodic tests would be conducted and for the students of slow learners would be given special attention.

X. EXAMINATIONS

- i) There shall be examinations at the end of each semester, for odd semesters in the month of October/November; for even semesters in April/May.
- ii) A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October/November or April/May. However candidates who have arrears in Practical shall be permitted to take their arrear practical examination only along with regular practical examination in the respective semester.
- iii) A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit/regulation prescribed or belated joining or on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the course.
- iv) Viva-Voce: Each candidate shall be required to appear for Viva-Voce Examination (in defending the Project only).
- v) For the Project Report, the maximum marks will be 150 for project report evaluation and for the Viva-voce it is 50. At the end of fourth semester viva-voce will be conducted on the basis of the Dissertation/Project report submitted by the student. HOD and external examiner will conduct the viva-voce jointly in the presence of Guide.
- vi) The results of all the examination will be published through the University Department where the student underwent the programme as well as through University Website.
- vii) Practical examination for M.Sc. Chemistry-Specialization in Nanoscience and Technology programme shall be conducted at the end of each semester.

XI. CONDONATION

Studentmust have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance to be applied for condonation in the prescribed form with prescribed fee. Students who have earned 69% to 60% of attendance are to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have attended below 60% are not eligible to appear for the examination and they shall

re-do the semester after completion of the programme, with the prior permission of the Registrar of the University.

XII. QUESTION PAPER PATTERN

(For all theory courses)

Max. Marks: 75 Hours Time: 3

PART-A: 10x2=20

(Answer all questions)

(Two questions from each unit)

Q.No. 1 - 10

PART-B: 5x5=25

(Answer all questions)

(One question from each unit with internal choice)

11. a) or b)
12. a) or b)
13. a) or b)
14. a) or b)
15. a) or b)

PART-C: 3x10=30

(Answer any three questions)

(One question from each unit)

Q.No. 16 – 20

XIII. EVALUATION

The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points. Evaluation for each course shall be done by continuous internal assessment by the concerned Course Teacher as well as by an end semester examination and will be consolidated at the end of the course. The components for continuous internal assessment are:

Two tests	- 15marks (Third /repeat tests for genuine candidates/absentees)
Seminar/Quiz	- 05 marks
Assignment	- <u>05 marks</u>
	25 marks

Attendance need not be taken as a component for continuous assessment, although the student should put in a minimum of 75% attendance in each course. In addition to continuous evaluation component, the end semester examination, which will be a written examination of at least 3 hours duration, would also form an integral component of the evaluation. The ratio of marks to be allotted to continuous internal assessment and to end semester examination is 25:75. The evaluation of laboratory component, wherever applicable, will also be based on continuous internal assessment for 25 marks and on end-semester practical examination 75 marks.

Distribution of marks for practical examinations

ESE mark distribution	
Quantitative/ Qualitative analysis	50 marks
Viva – Voce in practical	15 marks
Record Note	10 marks
Total	75 marks

(CIA marks 25 + ESE Marks 75 marks)

Project Work (PW)

Project report evaluation	150 marks
Viva-Voce examination	50 marks
Total	200 marks

(a) Topic:

The topic of the dissertation shall be assigned to the candidate before the end of first semester and a copy of the same should be submitted to the HOD.

(b) Plan of Work:

The student should prepare plan of work for the dissertation well in advance and get the approval of the guide during the first week of third semester of their study. In case the student wants to avail the facility or to carryout part of the work from other University/Research Institute/Laboratories in Industry, they can undertake the work with the permission of the guide and HOD and acknowledge the alien facilities/co-supervisor. The duration of the dissertation research shall be a minimum of three months in the fourth semester. In case the student stays away for work from the Department for more than one month, specific approval of the HOD should be obtained.

(c) No. of copies/distribution of dissertation:

The students should prepare four copies of dissertation and submit the same for the evaluation by Examiners. After evaluation one copy is to be retained in the Department library and one copy is to be submitted to the University, one copy can be given to the guide and one copy can be held by the student.

(f)Format to be followed:

The format/certificate for dissertation to be submitted by the students is given below:

Format for the preparation of project work:

- (a) Title page
- (b) Bonafide Certificate
- (c) Acknowledgement
- (d) Table of contents

CONTENTS

Chapter No.	TITLE	Page No.
1.	Introduction	
2	Review of Literature and Scope	
3.	Materials and Methods / Experimental	
4.	Results and Discussion	
5.	Summary	
6.	References	

Format of the Title Page:

TITLE OF THE DISSERTATION

Dissertation Submitted in part fulfillment of the requirement for the Degree of Master of Science in Chemistry (CBCS) to the Alagappa University, Karaikudi.

By	
Students Name:	
Register Number:	
Under the Guidance of	
(Faculty Name)	
University Emblem	
Department of Nanoscience and Technolog	ду
Alagappa University	
(Reaccredited with "A" Grade by NAAC)
Karaikudi - 630003	
Year:	

Format of the Certificate:

CERTIFICATE

Date: Place:

Signature of the Guide

XIV. PASSING MINIMUM

A candidate shall be declared to have passed in each course if he/she secures not less than 50% marks in the University ESE and not less than 50% in the aggregate, taking continuous assessment and University Examination marks together.

Candidates, who have secured the pass marks in the end-semester examination (ESE) but failed to secure the aggregate minimum pass mark (50%) are permitted to improve their CIA mark in the following semester and/or in University examinations.

A candidate shall be declared to have passed in the Project work if he/she gets not less than 50% in each of the Project Report and Viva-voce but not less that 50% in the aggregate of both the marks for Project Report and Viva-voce.

A candidate who gets less than 50% in the Project Report must resubmit the Project Report. Such candidates need take again the Viva-Voce on the resubmitted Project.

Improvement of marks - Norms for the Improvement marks

- a) Candidates willing to improve his/her performance of marks in the University Examination (other than Practical /Project work) in Theory course shall be permitted to re-appear again in the succeeding semester examination for the theory course(s) in which he/she has passed in the first appearance.
- b) Improvement of performance of marks is allowed only once of a (theory course) course.
- c) If the candidate shows no improvement in such appearance, marks secured by him/her in the first appearance will remain. No fresh marks statement will be issued in such cases.
- d) If the candidate shows improvement, a revised mark statement will be issued on production of the original mark statement issued to him/her.
- e) On improvement of performance, if a candidate becomes eligible for a higher class/ GPA and CGPA it shall be incorporated/awarded in the mark statement/provisional certificate/degree certificate on an application made by the candidate (along with the original Mark Statemen/Provisional Certificate/Degree Certificate) already issued (as the case may be)

together with a fee prescribed for the purpose. However, he/she is not eligible for Revision of Rank of for the award of Prize.

- f) Candidates willing to appear for the examination for improvement of marks at his/her last semester examination may await for the result of his/her latest appearance and re-appear twice in the immediately succeeding examination session.
- g) The fee for permission re-appear for improvement of marks is to be paid in addition to the examination fee for each course for which he/she is appearing for.
- h) The application for permission of re-appearance must be sent separately to the Controller of Examination in the prescribed form duly recommended by the HOD of the College on or before the last date for receipt of application for registration.
- i) Fees paid once by these candidates will not be refunded or adjusted under any circumstances.

XV. GRADING

Once the marks of the CIA and end-semester examination for each of the courses are available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in Table 2.

Marks	Grade Point	Letter Grade
96 and above	10	S+
91-95	9.5	S
86-90	9.0	D++
81 - 85	8.5	D+
76-80	8.0	D
71 – 75	7.5	A++
66 - 70	7.0	A+
61-65	6.5	А
56 - 60	6.0	В
50-55	5.5	С
Below 50	0	F

 Table 2 Grading of the Courses

From the second semester onwards the total performance within a semester continuous performance starting from the first semester is indicated respectively **Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA).** These two are calculated by the following formulae.

GPA =
$$\sum_{i=1}^{n}$$
 CiG
GPA = $\frac{\sum_{i=1}^{n}$ **CiG**
 $\frac{\sum_{i=1}^{n}$ **CiG**

Where 'Ci' is the Credit earned for the course i in any semester; 'Gi' is the Grade Point obtained by the student for the course i and 'n' is the number of courses **passed** in that semester.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses starting

from the first semester to the current semester.

XVI. CONFERMENT OF THE MASTER'S DEGREE

A candidate shall be eligible for the conferment of the Degree only after he/she has earned the minimum required credits for the programme prescribed therefore (i,e. 90 credits).

XVII. RANKING: UNIVERSITY RANK EXAMINATION

Candidates who pass all the examinations prescribed for the programme in the first instance and within a period two academic years from the year of admission to the programme only are eligible for University Ranking.

A candidate is deemed to have secured first rank provided he/she

- (i) should have passed all the papers in first attempt itself
- (ii) should have secured the highest over all grade point average (CGPA)

Rank certificate will be issued for a programme as follows:

- a) Only THREE ranks if the students strength is below 20.
- b) Only FIVE ranks if the student strength is above 20 but below 50.
- c) Only TEN ranks if the student strength is above 50 but below 100

XVIII. GRIEVANCE REDRESSAL COMMITTEE

The Department shall form a Grievance Redressal Committee for each course with the course Teacher and the HOD as the members. This committee shall solve all grievances relating to the internal Assessment marks of the students.

XIX. TRANSFER OF CREDITS

Students are permitted to transfer their programme credits from Directorate of Distance Education (DDE) of Alagappa University to Regular Stream and Vice-versa, if the PG degree programme is same.

XX. REVISION OF REGULATIONS AND CURRICULUM

The University may from time to time revise, amend and change the regulation and the curriculum, if found necessary.

XXI. COMMENCEMENT OF THIS REGULATION

These regulations shall take effect from the academic year 2016-17 i.e., for students who are to be admitted to the first year of the programme during the academic year 2016-17 and thereafter.

XXII. TRANSITORY PROVISION

Candidates who were admitted to the M.Sc. Chemistry-Specialization in Nanoscience and Technology programme of study from or after 2016-2017 shall be permitted to appear for the examinations under the above regulations for a period of four years. Thereafter, they will be permitted to appear for the examination only under the regulations then in force

Programme general objectives

Chemistry is a pervasive subject. All the branches of science need chemistry. It is an experimental science and students need to train in practicals to get expertise in doing fine experiments and handle sophisticated instruments. Along with the data obtained its statistical analysis is also required to establish authenticity in the fields like environmental science, space chemistry and biotechnology. There are immense potentialities for chemistry and post graduates to undertake advanced research or in Industries as skilled chemists. It is important for the educators to provide a platform for the student community to study in detail the basics and advancements in chemistry. Hence our goal in floating the M.Sc programme in Chemistry-Specialization in Nanoscience and Technology is to educate the undergraduate students of chemistry in the fascinating fields of chemistry in an effective manner.

Programme specific objectives

- 1. To provide, thorough well designed studies of theoretical and experimental chemistry, a worthwhile educational experience for all students
- 2. To acquire deep knowledge in fundamental aspects of all branches of chemistry
- 3. To acquire basic knowledge in the specialized thrust areas like Photoelectrochemistry, Materials Chemistry, Chemistry in Nanoscience and Technology etc.

Programme outcome

On successful completion of the programme

- 1. The students will be able to engage in noteworthy, self-govering, and creative research in chemistry.
- 2. The skill-based courses support the student to develop entrepreneurship in the field of chemistry.
- 3. The student acquired significant knowledge to clear the competitive examinations.

	Semester – I		
Course code: 5	38101Inorganic Chemistry - ICredits: 5Hours : 5		
Objectives	Understanding fundamental and advance level concepts of inorganic chemistry		
	Determine the Styx code of borane compounds		
	> Understanding the relationship between properties and structures/bonding.		
	To explain different types of nuclear reactions.		
	> To study the different types of metal clusters.		
Unit – I	Structure and Bonding: - VB Theory: Hybridisation – Sigma and pi bonding- concept of hybridization - VSEPR theory. MO theory. Application of MOT to homonuclear diatomic molecules like He ₂ , Li ₂ , N ₂ ,O ₂ and heteronuclear diatomic molecules like HF, NO and CO. Bond length, bond angles, bond order, bond energies - Intermolecular		
	forces - Dipole moment - Lattice energy –Born Land equation - Born Haber cycle. Covalent character in ionic compounds – Fajan's rule.		
Unit – II	Cages and Metal Clusters: - Inorganic chains - rings - cages and clusters - catenation - heterocatenation - intercalation chemistry - Isopoly, Heteropoly acids and their anions, Silicates, phosphazenes - phosphazene polymers; sulphur nitrogen compounds. sulphur halides, oxo acids of sulpur; Boranes: Structure and bonding in polyhedral boranes and carboranes, styx notation; Wade's rule; electron count in polyhedral boranes; isolobal analogy; borazine: synthesis and structure. Metal clusters - dinuclear clusters - trinuclear clusters - tetra nuclear clusters - hexanuclear cluster.		
Unit – III	Solid State Chemistry : - Packing of ions in HCP, FCC and BCC structure – determination of packing fraction in SC, BCC, FCC and HCP structure-density of cubic crystals-structure of ionic crystals - AB type of crystals -Sodium chloride, Zinc blende, Wurtzite and Caesium chloride - AB ₂ type of crystals- Fluorite, Rutile and Calcium carbide; A ₂ B type of crystals - Anti-fluorite; structure of covalent crystals - graphite and diamond - Electrical conductivity and super conductivity – High temperature super conductors –semi conductor types and applications – semi conductors in solar energy conversions		
Unit – IV	Nuclear Chemistry: - Properties of nucleus – nuclear stability, factors affecting the nuclear stability; Mode of decay - alpha, beta, gamma and orbital electron capture; Q value - threshold energy- reaction cross section; isobars- nuclear isomerism,		
	Classification of nuclear reactions - spontaneous, transmutation, capture reactions, spallation reactions, - nuclear fission reaction-characteristic of fission reaction; theory of fission-liquid drop model; types of fission reaction-chain reaction; nuclear fusion - conditions necessary - energy released in fusion - steller energy; usage of radioisotopes in neutron activation analysis and isotopic dilution analysis; dating methods-radio-carbon dating method and rock-dating method.		
Unit – V	Chemistry of Lanthanides and Actinides: - Lanthanides- occurrence, extraction and separation techniques (fractional crystalization, precipitation, ion-exchange, solvent-extraction and thermal decomposition, selective reduction and oxidation) - position in the periodic table - electronic configuation - oxidation states - size relationships - lanthanide contraction - spectral and magnetic properties - condition compounds of lanthanides - uses of lanthanides and their compounds. Actinides: Synthesis of elements - position in the periodic table, electronic configuration and oxidation states - spectral and magnetic properties - comparative account of lanthanides and actinides.		

Reference and Textbooks:-

Arnikar, H. J. (1995). Essentials of nuclear chemistry. New Delhi: New Age International.

Arora, A. (2005). Text book of inorganic chemistry. New Delhi: Discovery Publishing House.

Arora, M. G., & Singh, M. (1998). Nuclear chemistry. New Delhi: Anmol Publications.

Cotton, F. A. (2008). Advanced inorganic chemistry. India: Wiley

Cotton, F. A. (2008). Advanced inorganic chemistry. India: Wiley.

Emeléus, H. J., & Anderson, J. S. (1952). *Modern aspects of inorganic chemistry, by H.J. Emeléus, ... and J.S. Anderson, ...* London: Routledge and Kegan Paul.

- Emeléus, H. J., & Sharpe, A. G. (1983). *Advances in inorganic chemistry and radiochemistry*. New York: Academic Press.
- Huheey, J. E., Keiter, E. A., Keiter, R. L., & Medhi, O. K. (2013). *Inorganic chemistry: Principles of structure and reactivity*. New Delhi: Pearson.

Jolly, W. J. (1985). Modern inorganic chemistry. New York: McGraw-Hill.

Malik, W. U., Tuli, G. D., & Madan, R. D. (2009). *Selected topics in inorganic chemistry*. New Delhi: S. Chand & Company.

Prakash, S. (2003). Advanced inorganic chemistry. Delhi: S. Chand

Outcomes	➢ Will be able to study the knowledge of general inorganic chemistry concepts.
	➢ Will be able to analyse the structure and bonding of inorganic compounds.
	➢ Will be able to catch innovative idea for mini project work.
	▶ Will be able to supply broad theoretical and applied background.
	> Will be able to understand the various metal clusters.
	> Will be able to identify the different types of nuclear reactions.
	➢ Will be able to know the chemistry of the Lanthanides and the Actinides

Name of the Course Teacher Dr. S. Sangeetha/ Prof. K. Gurunathan

	Semester – I				
Course code: 53810	Organic Chemistry - I Credits: 5 Hours : 5				
Objectives	 To understand the important features of reaction mechanism. To make the students to understand the mechanism of aliphatic substitution and elimination reactions. Impart knowledge about aromatic character in organic compounds . To explain the Optical isomerism and conformational analysis through stereochemistry. 				
Unit - I	Introduction to Reaction Mechanism: - Reaction intermediates – free radicals, carbenes, nitrenes, carbanions, carbocations – formation and stability of reaction intermediates – principle of microscopic reversibility – Energy profile diagram – Hammond postulate - methods of determining reaction mechanism – kinetic methods – primary and secondary kinetic isotopic effect – non kinetic methods – isotope labeling, crossover experiment, trapping of intermediates, stereochemical studies				
Unit - II	 Aliphatic Substitution and Elimination Reactions: - Aliphatic Nucleophilic substitution: Nucleophilicity and basicity. Types of nucleophiles. S_N1 and S_N2 mechanisms – Effect of substrate structure – Effect of the attacking nucleophile – Effect of the leaving group – Effect of the solvent. Neighbouring group participation. SNimechanism. Aliphatic electrophilic substitution: Mechanism of aliphatic electrophilic substitution reactions – S_E1, S_E2 and S_Ei mechanisms. Elimination: E₁, E₂ and E₁cB mechanism – orientation effects in elimination reactions –Hoffmann's,and Zaitsev's rule – Competition between elimination and substitution - Bredts rule. 				
Unit - III	Aromaticity : - Aromatic character in benzene, five, six, seven and eight membered rings – other systems with aromatic sextets – Huckel's rule – Aromaticity concept of compounds with 2, 6, 10, 14, 18 and 22π electrons. Chemistry of cyclopentadienyl cation and anion. NMR as a tool for aromaticity of Annulenes. Concept of Homoaromaticity. Antiaromaticity of compounds with 4 and 8π electrons. Alternant and nonalternant hydrocarbons.				
Unit - IV	Stereochemistry: - Concept of chirality, necessary and sufficient conditions for chirality-Prochirality and prosteroisomerism - enantiotopic and diastereotopic ligands and faces - NMR distinction of enantiotopic/diastereotopic ligands - pro-R and pro-S and Re and Si faces. Stereospecific and stereoselective reactions.Asymmetric synthesis; Cram rule. Optical isomerism due to axial chirality - biphenyl, Allenes and spiranes - RS notation -Stereochemistry of ansa compounds. Geometrical isomerism: E-Z nomenclature - determination of geometrical isomers using physical and chemical methods.				
Unit - V	Conformational analysis: - Configuration and Conformation. Conformational analysis of acyclic systems: Ethane propane, ,n-butane and ethylene glycol.Conformational analysis of cyclic systems: cyclohexane and mono, disubstituted cyclohexanes. Fused and bridged bicyclic systems: Decalins. Conformation, reactivity and stereoelectronic factors of cyclic systems.				

 Carey, F. A., & Sundberg, R. J. (2007). Advanced organic chemistry. New York: Springer. Eliel, E. L. (1975). Stereochemistry of carbon compounds. New Delhi: Tata McGraw-Hill Pub. Finar, I. L. (2003). Organic chemistry: Volume 1: The Fundamental Principles. India: Pearson eduation. Kalsi, P. S. (1990). Stereochemistry: Conformation and mechanism. New York: Wiley. Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi: Macmillan. Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through carbon-carbon bond rotation 		Reference and Textbooks:-					
 Finar, I. L. (2003). Organic chemistry: Volume 1: The Fundamental Principles. India: Pearson eduation. Kalsi, P. S. (1990). Stereochemistry: Conformation and mechanism. New York: Wiley. Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi: Macmillan. Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Carey, F. A., & Sundberg, R. J. (2007). Advanced organic chemistry. New York: Springer.						
 Kalsi, P. S. (1990). Stereochemistry: Conformation and mechanism. New York: Wiley. Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi: Macmillan. Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Eliel, E. L. (1975).	Eliel, E. L. (1975). Stereochemistry of carbon compounds. New Delhi: Tata McGraw-Hill Pub.					
 Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi: Macmillan. Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	Finar, I. L. (2003). Organic chemistry: Volume 1: The Fundamental Principles. India: Pearson eduation.						
 Macmillan. Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Kalsi, P. S. (1990).	Stereochemistry: Conformation and mechanism. New York: Wiley.					
 Nasipuri, D. (2012). Stereochemistry of organic compounds: Principles and applications. Tunbridge Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Mukherji, S. M., &	Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi:					
 Wells, Kent, UK: New Academic Science Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Macmillan						
 Norman, R. O., & Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	Nasipuri, D. (2012)). Stereochemistry of organic compounds: Principles and applications. Tunbridge					
 and Hall. Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Wells, Ker	t, UK: New Academic Science					
 Smith, M., & March, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and structure. Hoboken, NJ: John Wiley & Sons. Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Outcomes Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	Norman, R. O., &	Coxon, J. M. (1995). Principles of organic synthesis. London: ELBS with Chapman					
structure. Hoboken, NJ: John Wiley & Sons.Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman.Outcomes> Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through	and Hall.						
Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman.Outcomes> Graphically visualize organic reactions with correct reaction mechanisms> Use the concepts nucleophile and electrophile in order to explain the reactivity> Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism> Will know the nature and stability of aromatic compounds> From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood> Will be able to understand the flexible nature of organic compounds through	Smith, M., & Mar	ch, J. (2007). *Marchs advanced organic chemistry: Reactions, mechanisms, and					
Outcomes > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through	<i>structure</i> . H						
 > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds > From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood > Will be able to understand the flexible nature of organic compounds through 	Sykes, P. (1986). Guidebook to Mechanism in Organic Chemistry. Harlow: Longman.						
 Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	Sykes, P. (1986).	•					
 SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	-	Guidebook to Mechanism in Organic Chemistry. Harlow: Longman.					
 Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	-	Guidebook <i>to Mechanism in Organic Chemistry</i> . Harlow: Longman. ➤ Graphically visualize organic reactions with correct reaction mechanisms					
 From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood Will be able to understand the flexible nature of organic compounds through 	-	 Guidebook <i>to Mechanism in Organic Chemistry</i>. Harlow: Longman. ➢ Graphically visualize organic reactions with correct reaction mechanisms ➢ Use the concepts nucleophile and electrophile in order to explain the reactivity 					
compounds will be understoodWill be able to understand the flexible nature of organic compounds through	-	 Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as 					
Will be able to understand the flexible nature of organic compounds through	-	 Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism 					
	-	 Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. > Graphically visualize organic reactions with correct reaction mechanisms > Use the concepts nucleophile and electrophile in order to explain the reactivity > Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism > Will know the nature and stability of aromatic compounds 					
cathon-carbon bond rotation	-	 Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic 					
carbon-carbon bond rotation	-	 Guidebook to Mechanism in Organic Chemistry. Harlow: Longman. Graphically visualize organic reactions with correct reaction mechanisms Use the concepts nucleophile and electrophile in order to explain the reactivity Will be able to analyze some common and important organic reactions such as SN2, E2, SN1 and E1 with mechanism Will know the nature and stability of aromatic compounds From stereochemistry the three dimensional atoms arrangement of organic compounds will be understood 					

Name of the Course Teacher Dr. K. Radhakrishnan/Prof. K. Gurunathan

		Semester – I						
Course code: 53810)3	Physical Chemistry-I	Credits: 5	Hours: 5				
Objectives	\triangleright	Understand the essential of quantum theory and its	s mechanics that	are				
		converging to create the new area of quantum cher	mistry.					
	\succ	To make the students understand the principles of	different model	s of double				
		layer in the field of electrochemistry and various t	ypes of over pot	entials.				
	\succ	Employ theories of reaction rates, unimolecular re	action, and elem	entary				
		reactions in solutions.		·				
	\triangleright	➤ Impart knowledge about basic concept of thermodynamics and thermodynamics						
		of ideal and non-ideal solutions.	-					
	\triangleright	Apprehend and explain the principles of photoche	mistry and solar	energy				
		conversion.	2					
Unit - I	Ou	antum Chemistry – I: -						
		antum Theory: - Inadequacy of classical mechani	cs. Black-body	radiation.				
		nck's distribution, Photoelectric effect, Wave-parti	-					
		ticles and de Broglie's hypothesis, Dynamics of mi	•					
	-	rpretation of the wave function, Normalization, Qu	- ·					
		Uncertainty principle.	<i>"</i>					
		antum mechanics: - Schrodinger equations, Opera	ator algebra. On	erators linear				
		hermitian, Eigen functions and Eigen values, Ang						
Unit - II		ctrochemistry: - Polarizable and Non-pola						
		ation–Relating charge density and interfacial						
	-	ble layer–Born model, Helmholtz-Perrin model, C						
		del and Stern model. Derivation of Butler-Volmer		-				
		bes of electrode reaction, various types of over pote	-	quations.				
Unit - III		emical Kinetics -I: - Theories of Reaction Rates: I		te constants				
		ction order, determination of rate law, reactions ap		-				
		perature dependence of reaction rates, Arrhenius p						
		nentary reactions, steady-state approximation, Kin						
		molecular reactions: Lindemann- Hinshelwood r	-					
		rgy of a composite reaction.						
		mentary Reactions in Solutions: Activated comp	lay theory Pror	stad Biarrum				
		ation - Primary and secondary salt effects, Eyring	•	U				
	-	action - Frinary and secondary sait effects, Eyring	equation and po	tential energy				
Unit - IV		ssical Thermodynamics: -						
		ermodynamics concept: - Second law of thermo	dunamica Nood	Statemonta				
		ncept of entropy, reversible and irreversible						
			-	-				
		damental equations for open systems, Partial n ume and chemical potential, Gibbs-Duhem equation	-	-				
			ion, real gases	and rugacity -				
		vity and activity co-efficient – determination.	no. Liquid 1:	mid colutions				
		ermodynamics of ideal and non-ideal solutio	-	-				
	-	id-solid solutions, muticomponent systems and m		-				
		ong electrolytes, Debye-Huckel limiting law and						
		bye-Huckel Theory. Phase behavior of one and two	components sy	stems and				
	clas	sification of phase transitions						

Unit - V	Photochemistry and Solar Energy Conversion: -
	Photochemistry: - Jablonski diagram, Photophysical process in electronically
	excited molecules by different types of pathways, Resonance energy transfer rates,
	Fluorescence quenching kinetics in solution phase, Quantum yield.
	Photosensitization, Chemiluminences, Lasers.
	Solar energy conversion: - Basic concept of photocatalysis, visible light water
	splitting, Photovoltaic cells, Perovskites solar cell, Dye sensitized solar cells,
	efficiency and measurements.
Referene and Tex	t books:-
Allis, W. P. (1964)). Thermodynamics and statistical mechanics. Taipei: Reprinted by Hsin Yueh
Atkins, P. W., & P	aula, J. D. (2010). Physical chemistry. New York: W.H. Freeman.
Bockris, J. O., & F	Reddy, A. K. (2004). Modern electrochemistry. New York: Kluwer Academic.
Chandra, A. K. (19	994). Introductory quantum chemistry. New Dehli: Tata McGraw-Hill.
Glasstone, S. (200	7). Thermodynamics for chemists. New York: Narahari Press.
Gupta, K. S. (199	2). Chemical kinetics & reaction mechanism. Jaipur, India: RBSA.
Gurtu, J. N., & G	urtu, A. (2010). Physical chemistry Vol. I. Meerut, India: Pragati Prakashan.
Houston, P. L. (20	001). Chemical kinetics and reaction dynamics students solutions manual. Boston:
McGraw-I	Hill.
Klein, S. A., & N	ellis, G. (2012). Thermodynamics. New York: Cambridge University Press.
Laidler, K. J. (n.d.)). Chemical kinetics. New York, NY: HarperCollins.
Levine, I. N. (2014	4). Quantum chemistry. Boston: Pearson.
Mordechay Schles	inger, Modern Aspects of Electrochemistry: Issue 43, Springer, Netherlands, 2009.
Oldham, K. B., B	ond, A. M., & Myland, J. C. (2013). Electrochemical science and technology:
Fundamen	tals and applications. Chichester: Wiley.
Prasad, R. K. (20	10). Quantum chemistry. Tunbridge Wells: New age Science.
Rajaram, J. (1986	b). Thermodynamics for students of chemistry. Jalandhar: Shobhan Lal Nagin Chand.
Silbey, R. J., Albe	erty, R. A., & Bawendi, M. G. (2017). Physical chemistry. Hoboken, NJ: Wiley.
Outcomes	Understand how operators play a major role in quantum mechanics.
	Realize the difference between different models of double layer in the field of
	electrochemistry.
	Understand how rate law is different from rate constant? and how order of
	reaction is different from one another?
	Recognize the need of second law of thermodynamics
	Realize the future research possibilities in the area of water splitting and dye sensitized solar cells.

Name of the Course Teacher **R.M. Jeyam/ Dr. P. Shakkthivel**

Semester – I							
Course code: 538107Inorganic Chemistry PracticalCredits: 4Hourse							
Objectives	➤ To en	\blacktriangleright To enable the students, to apply the principle in the semi-micro analysis of an					
	inorganic salt mixture						
			nt types of EDTA and a				
			o understand Preparati	on and Analysis	s of Co-Ordination		
	-	plexes.					
	To pr	actice the estimation	of metal ions present	in the given solu	ition.		
Unit - I	-	itative Analysis: -					
	-	A titrations : i) Ca ii)	•				
	b) Redo		s. Ce(IV), Fe(II) vs. d	ichromate			
			vs. Ce(IV)				
Unit - II		micro qualitative ar	-				
	-	of mixtures containi	-				
		familiar cations	: W, Mo, Zr, Ti, V,				
Unit - III	-	•	of Co-Ordination Co	-			
	Preparation of co-ordination complexes by single/double stage method						
		s:- (APA format)					
	. ,		practical inorganic cl				
	· · ·	perimental inorganic	chemistry / William G	eorge Palmer. (Cambridge:		
Univers	•						
		• •	inorganic analysis ind	cluding elemente	ary instrumental		
	s. London:	•					
	-	• •	inorganic chemistry. P	lace of publication	ion not identified:		
	Rarebooksclub Com.						
Outcomes		•	owledge about in-orga	• •	ractical		
			I the how to do experir				
		•	owledge in different ty	•			
		-	ledge about the prepar	ation and analys	sis of Co-Ordination		
	Comp	olexes					

Name of the Course Teacher **Dr. S. Sangeetha/Prof. K. Gurunathan**

		Semester - II				
Course code:	538201	Inorganic Chemistry - II	Credits: 5	Hours: 5		
Objectives	DetermUnders	standing fundamental and advance level conc nine the basic concepts of coordination comp standing the relationship between properties a plain how to use the inorganic chemistry for c	ounds and structures/box			
	-	dy the principle and importance of organome	-			
Unit - I	planar and d-orbitals Dq, spect tetrahedra application	Theories of Coordination Compounds : - Valence Bond Theory-octahedral, square planar and tetrahedral complexes - limitations of VBT; Crystal Field Theory - splitting of d-orbitals in octahedral, tetrahedral complexes - factors affecting the magnitude of 10 Dq, spectrochemical series, crystal field stabilization energy of octahedral and tetrahedral complexes - distortion of octahedral complexes - Jahn-Teller distortion, applications of CFT; Spinels - structure, classification and site selection; Molecular Orbital Theory – sigma and pi bonding in octahedral complexes. Comparison of VBT,				
Unit - II	Reactions Trans effe theory; m reactions- compound	Mechanism in Complexes: - Conjugate ba of coordinated ligands, substitution reaction ect –uses; theories of trans effect- electrostation echanism of substitution reactions- factors isomerisation in planar complexes; electron ls - inner sphere mechanisms -outer sphere me lementary electron transfer reaction mechani	ons in square platic polarization the affecting the rate transfer reaction dechanisms - com	anar complexes - eory - pi bonding te of substitution as in coordination		
Unit - III	electron re carbon bo substituted vibrationa organomet complexes	Organometallic Chemistry - I : - Review of formalisms such as oxidation state, 18- electron rule, classes of ligands, Valence electron count (16/18 electron rules); Metal carbon bond types- Structure and bonding in mono and polynuclear metal carbonyls; substituted metal carbonyls and related compounds; reactivity of metal carbonyls; vibrational spectra of metal carbonyls; dinitrogen and dioxygen as ligands in organometallic compounds. Nitrosyls: terminal bridging and bent cyclopentadienyl complexes- bonding with transition metals- metallocenes- ferrocene; Metal arene				
Unit - IV	complexes- synthesis and reactivity.Organometallic Chemistry-II: - Reaction mechanisms of organometallic complexes, ligand substitution, oxidative addition, reductive elimination, migratory insertion and hydride elimination, transmetallation, Reactions of coordinated ligands in organometallics. Fluxional molecules. Catalysis - Hydrogenation, Hydroformylation, hydrosilation, Monsanto process, Wacker process, alkene polymerization- Ziegler-Natta Polymerisation.					
Unit - V	distributio bioligands binding si sodium ion metals – medicine	mic Chemistry–I :- Essential and trace n, thermodynamic and kinetic factors for the - amino acids, proteins, nucleic acids, nucl tes; molecular mechanism of ion transport n pump of <i>cis</i> -platin, radio-isotopes (e.g., Tc Al, Cd, . Processes in Photosynthesis – F - therapeutic applications Hg and Cr toxic tion by chelation. special ligands - porphyrin	e presence of sel eotides and their across membrar & I ₂) and MRI a ₂ Photosystems I a c effects with sp	ected metal ions; potential metal - nes - ionophores. gents. Toxicity of and II. Metals in pecific examples,		

Reference and Textbooks:-

Arora, A. (2005). Text book of inorganic chemistry. New Delhi: Discovery Publishing House. Cotton, F. A. (2008). Advanced inorganic chemistry. India: Wiley Graddon, D. P. (1968). An introduction to co-ordination chemistry. Oxford: Pergamon Press. Huheey, J. E., Keiter, E. A., Keiter, R. L., & Medhi, O. K. (2013). Inorganic chemistry: Principles of structure and reactivity. New Delhi: Pearson. Kettle, S. F. (1969). Co-ordination compounds. Nelson. Prakash, S. (1945). Advanced inorganic chemistry. New Delhi: S. Chand & Company. Sodhi, G. S. (2011). Textbook of inorganic chemistry. New Delhi, India: Viva Books. Agarwala, S. K., & Lal, K. (2009). Advanced inorganic chemistry. Meerut: Pragati Prakashan. Lewis, J. (1967). Modern coordination chemistry principles and methods. New York: Interscience Publ. Gopalan, R. (2012). Textbook of inorganic chemistry. India: Universities Press (India) Private. Lawrance, G. A. (2010). Introduction to coordination chemistry. Chichester: Wiley. Sattler, K. D. (2011). Clusters and fullerenes. Boca Raton, FL: CRC Press. Housecroft, C. E., & Sharpe, A. G. (2018). Inorganic chemistry. Harlow: Pearson Education. **Outcomes** ▶ Will be able to how to use in-organic chemistry. \succ Will be able to study the role of inorganic materials. > Will be able to catch innovative idea for mini project work. > Will be able to understand the reaction mechanism of inorganic complexes. > Will be able to study the different type of catalysis reactions > Will be able to identify which bond has occurred by analyzing the type of electron interactions in terms of transferring or sharing. > Will be able to know the chemistry of the bioinorganic materials

> Name of the Course Teacher Dr. S. Sangeetha/ Prof. K. Gurunathan

		Semester – II	-			
Course code:	538202	Organic Chemistry - II	Credits: 5	Hours: 5		
Objectives	reag	recognize the importance of oxidation and reduction gents. understand the important features of reaction mecha rangements.		-		
	To aApp	understand the substitution reactions in aromatic cor prehend knowledge about natural products.				
Unit - I	Oxidation and Reduction: - Mechanism and application of stereochemical aspect of the following oxidation – reduction reactions: Oxidation reaction involving SeO2, OsO4, periodic acid, N-bromosuccinimide, Sharpless asymmetric epoxidation, Hydroboration- oxidation, Baeyer-Villiger oxidation, Woodward-Prevost reactions. Catalytic hydrogenation- Heterogeneous catalysts Pd/Pt/Rh/Ni. Homogeneous catalyst- Wilkinson catalyst. Reduction of various functional groups using lithium aluminium hydride and sodium borohydride. McMurry reaction- Birch reduction – Meerwein Pondorf					
Unit - II	Verley reduction – Wolff-Kishner reduction - Stereo/enantioselective reductions of Chiral Boranes. Name reactions and Molecular rearrangements: - Mechanism of Aldol condensation – Perkin reaction – Knoevenagel reaction – Mannich reaction – Cannizaro reaction – Benzoin condensation – Claisen ester condensation – Darzen's reaction – Reformatsky					
	Mecha Beckma	n – Wittig reaction – Grignard reactons. nism of the following rearrangement reactions: - ann, Hofmann, Curtius, Baeyer – Villeger, Sommele c acid, Claisen, Fries, Dienone – phentol and di-pi n	et – Hauser, Fav			
Unit - III	Aromatic substitution reactions: -Aromatic electrophilic substitutionMaromatic substitution - Reimer-Tiemann reaction - Vilsmeyer- Haack reaction - Kolbe-SchmidtFormylation - Reimer-Tiemann reaction - Vilsmeyer- Haack reaction - Kolbe-Schmidtreaction. Partial rate factors - ortho/para ratio - Quantitative treatment of reactivity of theelectrophile (the selectivity relation).Aromatic nucleophilic substitution reactions (S _N Ar). Unimolecular, bimolecular andbenzyne mechanisms. Chichibabin reaction. Quantitative treatment of the effect ofstructure on reactivity - The Hammett relationship - significance of reaction andsubstituents constants.					
Unit - IV	androst progest	Chemistry of Natural products: -Steroids: synthesis of cholesterol, male sex harmones – androsterone and testosterone – female sex harmones – oestrone, equilenin and progesterone. Vitamins: Structures of A, B12, C, and K. Nucleic acids: Structures of nucleoside, nucleotide RNA and DNA, functions of nucleic acids.				
Unit - V	Chrom analyte chroma chroma	hatography: - Basic principles of chromatography. , eluent. Types of chromatography: paper tography(TLC), column chromatography, ion-ex tography(GC), High-pressure liquid chromatography.	Stationary phas chromatograph cchange chron	hy, Thin layer natography, Gas		

Reference and Textbooks:

Carey, F. A. (2000). Advanced organic chemistry. New York: Springer

Clayden, J., Greeves, N., Warren, S., & Wothers, P. (2001). *Organic chemistry*. New York, NY: Oxford University Press.

- Finar, I. L. (1985). Organic Chemistry: Streochemistry and the Chemistry of Natural Products. Harlow: Longman.
- Finar, I. L. (2003). Organic chemistry: Volume 1: The Fundamental Principles. India: Pearson eduation.

Lundanes, E., Reubsaet, L., & Greibrokk, T. (2013). *Chromatography: Basic principles, sample preparations and related methods*. Weinheim, Germany: Wiley-VCH.

March, J. (2005). Advanced organic chemistry: Reactions, mechanisms, and structure. New York: Wiley

Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi: Macmillan

Bansal, R. K., & Ahluwalia, V. K. (2012). Organic Reaction Mechanisms. Tunbridge Wells, Kent, UK: New Academic Science.

Bruice, P. Y. (2016). Essential organic chemistry. Upper Saddle River, NJ: Pearson.

Chatwal, G. R. (1981). The chemistry of organic natural products. Bombay: Himalaya Pub. House.

Miller, J. M. (2009). Chromatography: Concepts and contrasts. Hoboken: J. Wiley & Sons.

Mundy, B. P., Ellerd, M. G., & Favaloro, F. G. (2005). *Name reactions and reagents in organic synthesis*. Hoboken, NJ: John Wiley & Sons.

Outcomes	 Oxidation reduction concept using various reagents.
	> Able to Explain the concept of reaction mechanism through organic name reactions
	and molecular rearrangement reactions
	aromatic electrophilic substitution reaction provides insight knowledge about
	aromatic compounds and their reactivity
	synthesis and stereochemistry of steroids will be understood
	properties and structure of vitamins and nucleic acids will be known
	➢ able to know the application of chromatographic techniques in organic chemistry

Name of the Course Teacher Dr. K. Radhakrishnan/Prof. K. Gurunathan

Semester – II								
Course code	e: 538203	Physical Chemistry - II	Credits: 5	Hours: 5				
Objectives	number perturb > Explain	 Understand the application of wave mechanics and John-teller effect, quantum numbers, zero-point energy, orthogonisation and normality, tunneling, perturbation theory. Explain the construction of Character Tables for C_{2V} and C_{3V} point group molecules, and Great orthogonality theorem and its proof 						
	group t selection To und kinetic	 group theory to IR spectral activity of vibrational modes of ammonia molecule, selection rules for vibrational IR and RAMAN spectra, > To understand the Solution and gas phase kinetics, Enzymes, Fast reaction kinetics 						
Unit - I	Quantum oscillators, dimension	Chemistry – II : - Application of wave med shapes of orbitals, shape quantization. Parti al boxes, distortions, John-teller effect, quan hogonisation and normality, tunnelling.	chanics: rigid r cle in a box: C	otor, harmonic One and three-				
Unit - II	symmetry, Principal a with illust theoretical representat	heory- I : - Symmetry elements and symplemetry and its types of Symmetry, Proper and its and subsidiary axes. The concept of grative examples, Symmetry operations and rules (Group postulates), reducible and irrections of symmetry operations, Construction int group molecules, and Great orthogonality	d Improper ax roups, Assigni d order of a ducible represent of Character	is of Symmetry, ng Point groups group - Group entations, matrix Tables for C _{2V}				
Unit - III	group theo selection r molecules Selection r	Group Theory - II : -Direct product representation, Spectroscopy application of group theory to IR spectral activity of vibrational modes of ammonia molecule, selection rules for vibrational IR and RAMAN spectra, Mutual exclusion rule for molecules with center of symmetry, selection rules for rotational spectroscopy. Selection rules for n- π^* and π - π^* transitions in formaldehyde molecule. SALC procedure, Applications of SALC procedure to ethylene and butadiene molecules.						
Unit - IV	rate laws, l Polymeriza catalysis: I Enzymes: of enzyme Fast reaction	Kinetics - II : -Solution and gas phase kinet Hydrogen-bromine reaction, chain-branching ation kinetics: stepwise and chain polymerize Features of acid-base catalysis. - Michaelis-Menten mechanism of enzyme s, mechanisms of enzyme inhibition. on kinetics: Relaxation methods (T- and P- chockwave technique, Flash photolysis.	g explosion rea ations. Homog catalysis, catal	actions, geneous ytic efficiency				
Unit - V	Surface te interface; l adsorption Heterogen Langmuir-	Chemistry and Heterogeneous Catalysis ension, solid-liquid interfaces; contact as Physisorption and chemisorptions, Freundlic isotherms; Surface area determinations. neous catalysis: Kinetics of surface reaction Hinshelwood mechanism, Langmuir-Riden n, Basic aspects of semiconductor catalysis a	ngle and wet ch, Gibbs, Lan ns involving ad eal mechanis	tting; Solid-gas gmuir, and BET dsorbed species, m, Rideal-Eley				

Reference and Textbooks:

- Atkins, P., & Paula, J. D. (2017). *Elements of physical chemistry*. Oxford: Oxford University Press.
- Birdi, K. S. (2016). *Handbook of surface and colloid chemistry*. Boca Raton: CRC Press/Taylor & Francis Group..
- Castellan, G. (1972). *Physical chemistry*. Reading, MA: Addison Wesley.
- Chandra, A. K. (1994). Introductory quantum chemistry. New Dehli: Tata McGraw-Hill.
- COTTON, F. A. (2015). CHEMICAL APPLICATIONS OF GROUP THEORY. Place of publication not identified
- F. Albert Cotton, Chemical Applications of Group Theory
- Gupta, K. S. (1992). Chemical kinetics & reaction mechanism. Jaipur, India: RBSA.
- Gurtu, J. N., & Gurtu, A. (2010). Physical chemistry Vol. I. Meerut, India: Pragati Prakashan.
- Houston, P. L. (2001). Chemical kinetics and reaction dynamics. New York: McGraw-Hill
- Kunju, A. S., & Krishnan, G. (2015). *Group theory and its applications in chemistry*. New Delhi: PHI Learning.
- Laidler, K. J. (1987). Chemical kinetics. New York, NY: Harper & Row.
- Levine, I. N. (1991). Quantum chemistry. Englewood Cliffs, NJ: Prentice Hall.
- Prasad, R. K. (2010). Quantum chemistry. Tunbridge Wells: New age Science.
- Raman, K. V. (1994). *Group theory and its applications to chemistry*. New Delhi: Tata McGraw-Hill Publ.

Silbey, R. J., Alberty, R. A., & Bawendi, M. G. (2005). Physical chemistry. New York: J. Wiley.

Somorjai, G. A., & Li, Y. (2010). *Introduction to surface chemistry and catalysis*. Hoboken, NJ: Wiley.

5		
Outcomes		Understand application of wave mechanics.
	≻	Realize the difference between different axis of symmetry and how to represent
		matrix
	\triangleright	Construct Character Tables for C2V and C3V point group molecules
	\succ	Realize the SALC procedure and application
	≻	Recognize the Michaelis-Menten mechanism of enzyme catalysis, catalytic
		efficiency of enzymes, mechanisms of enzyme inhibition.

Name of the Course Teacher **R. M. Jeyam/Prof. P. Shakkthivel**

	Semester – II					
Course code:	8 i					
Objectives	> Teach students safe and good laboratory practice to be followed in organic chemistry					
	lab.					
	> Engage in safe laboratory practices by handling laboratory glassware, equipment and					
	chemical reagents appropriately, using general guidelines and basic knowledge about					
	the common hazards associated with them in an organic chemistry laboratory. ➤ Assemble glassware and perform the following techniques as a part of preparative					
	procedures, aqueous workup, distillation, reflux, separation, isolation and					
	crystallization.					
	> Predict the outcome of several common organic reaction types through a basic					
	understanding of starting materials, functional groups, mechanism and typical reaction					
	conditions.					
	Characterize the prepared substances by UV and IR spectroscopic techniques.					
Unit - I	1. Qualitative analysis: - Separation and Identification of components in a two					
	component mixture and preparation of their derivatives. Determinations of boiling					
	point/melting point for components and melting point for their derivatives.					
Unit - II	2. Double stage Organic preparation : -					
	(a) Benzanilide from benzophenone.					
	(b) Eosin from phthalic anhydride					
	(c) Methyl orange from Aniline(d) Benzoic acid from Aniline					
Unit - III	3. Quantitative estimations: -					
	(a) Aniline					
	(b) Phenol (c) Glucose					
	(c) Glucose					
Unit - IV	4. Identification of functional groups of organic compounds prepared and					
	extracted: -					
	(a) UV-VIS spectra of _,unsaturated carbonyl systems					
D.C.	(b) FT IR spectra of few organic compounds					
	nd Textbooks:					
	(2009). Laboratory manual of organic chemistry. New Delhi: New Age					
	ational.					
	., & Vogel, A. I. (2007). Vogels textbook of practical organic chemistry. New Delhi:					
	on Education.					
-	Vogel, A. I. (2000). <i>Elementary practical organic chemistry part 2: Qualitative organic analysis</i> . India: CBS					
	2000). Elementary practical organic chemistry: Quantitative organic analysis. New					
Outcomes	CBS					
Outcomes	Acquire basic knowledge on practical techniques and approaches commonly used in organia abamistry linked to abamistry.					
	used in organic chemistry linked to chemistry					
	Understand the separation and identification of organic molecules and properties of organic compounds					
	preparation of organic compounds					
	Gain knowledge on organic chemistry practical through UV and IR techniques					

Name of the Course Teacher: Dr. K. Radhakrishnan/Prof. K. Gurunathan

Semester – III							
Course code: 5	538301	Inorgani	ic Chemistry - III	Cred	its: 5	Hours : 5	
Objectives	 Deterninorga Under To exp 	 Understanding fundamental and advance level concepts of inorganic chemistry Determine the application of IR, raman and mossbauer spectroscopy to the study of inorganic compounds Understanding the spectral and magnetic properties of complexes. To explain NMR Spectroscopy of Inorganic Compounds. To study the organic photochemistry, bioinorganic chemistry II 					
Unit - I	Compound compound linkage is Mossbau Doppler	Application of Ir, Raman and Mossbauer Spectroscopy to the study of InorganicCompounds: - Application of IR and Raman spectra in the study of coordinationcompounds - application to metal carbonyls, nitrosyls and sulphate - geometrical andlinkage isomerism - detection of inter and intramolecular hydrogen bonding.Mossbauer Spectroscopy:- Mossbauer Effect - resonance absorption - Doppler effect -Doppler velocity - isomer shift -magnetic hyperfine splitting-application of Mossbauerspectroscopy in the study of iron and tin complexes.					
Unit - II	compound octahedra level dia coordinat magnets,	ds - selection rule l complexes, Cha grams of Orgel ion compounds - magnetic suscepti	roperties of Complexe es, band intensities and tracteristics of d-d trar and Tanabe - Suga dia, para – ferro ar bility by Gouy balance.	band widths; nsitions. Nephe no diagram. M nd antiferro –	Term s lauxetio Magnet magne	tate for d ions in c effect, energy ic properties of tism –Molecular	
Unit - III	NMR spe constants	NMR Spectroscopy of Inorganic Compounds: - NMR Spectroscopy: ³¹ P and ¹⁹ F and – NMR spectroscopy – Introduction – application in structural problem – evaluation of rate constants – monitoring the course of reaction – NMR of fluxional molecules – NMR of paramagnetic molecules – contact shifts and shift reagent.					
Unit - IV	compound – charge photogaly	ds – photoaquation transfer photo c vanic cell – splittin	: - Photochemistry of C n – photoanation – photo hemistry – photosensi g of water to evolve hydro s.	toisomerisation tisation – sola	– photo r energ	o redox reactions gy conversion –	
Unit - V	 Pt(II) and Pt(IV) complexes. Bioinorganic Chemistry II : - Active-site structure and function of metalloproteins and metalloenzymes; structure and properties of haemoglobin, myoglobin, hemocynin and hemerythrin. Zinc containing enzymes-carboxypeptidase-A and carbonic anhydrase. Electron transfer proteins - active site structure and functions of ferredoxin, rubridoxin and cytochromes. Nitrogen fixation; Structure and properties of Chlorophyll. 						
 Reference and Textbooks: Arora, A. (2005). <i>Text book of inorganic chemistry</i>. New Delhi: Discovery Publishin House Das, A. K. (2013). <i>Bioinorganic Chemistry</i>. S.L.: Books & Allied Graddon, D. P. (1968). <i>An introduction to co-ordination chemistry</i>. Oxford: Pergamo Press. Huheey, J. E., Keiter, R. L., & Keiter, E. A. (1993). <i>Inorganic chemistry: Principles structure and reactivity</i>. New York: Harper Collins. Kettle, S. F. (1969). <i>Co-ordination compounds</i>. Nelson. Mackay, K. M., Mackay, R. A., & Henderson, W. (1996). <i>Introduction to mode inorganic chemistry</i>. London: Blackie Academic & Professional. 					d: Pergamon Principles of		

Outcomes	Will be able to study the basic ideas of IR and RAMAN spectroscopy
	> Will be able to study the Mossbauer Spectroscopy.
	> Will be able to catch innovative idea for mini project work
	> Will be able to understand the magnetic properties of complexes.
	> Will be able to understand the inorganic photochemistry
	> Will be able to identify the different types of NMR spectroscopy
	> Will be able to know the chemistry of bio-Inorganic Compounds

Name of the Course Teacher **Dr. S. Sangeetha/ Prof. K. Gurunathan**

		Semester – III				
Course code: 538302		Organic Chemistry - III	Credits: 5	Hours : 5		
Objectives	≻ To u	nderstand the basic principle and types of reaction	ns of photocher	nistry and		
	pericyclic reactions.					
	> To know the principle and applications of UV, IR and Mass spectroscopy.					
	> To know the important concept of proton and 13 C NMR spectroscopy in organic					
	reactions					
	To gain knowledge about heterocyclic compounds					
	To understand the concept of retrosynthetic analysis of organic compounds					
		nderstand the protection and deprotection of vario				
Unit - I		nemistry and Pericyclic Reactions: - Basic				
		Norrish-I and Norrish-II type reactions - Paterno buchi reaction - photochemistry of				
		and dienes, cis - trans isomers- photosensitization	-			
	-	lic Reactions: Symmetry properties of Mole	ecular Orbital	s, Electrocyclic,		
	Cycload	dition and sigmatropic reactions.				
Unit - II	UV, IR	and Mass Spectroscopy: -				
	UV Spe	ctroscopy: Principle – absorption spectra of conju	ugated dienes -	- unsaturated		
	carbony	l compounds – Woodward – Fieser rules.				
	IR Spec	troscopy: - Molecular vibrations – vibrational free	equency – facto	ors influencing		
	group frequencies.					
	Mass Spectrometry: - Principle – type of ions base peak – parent ion, metastable and					
	Isotopic peaks – fragmentation – Mc Lafferty rearrangement – Retro Diels – Alder					
	reaction					
Unit - III		R Spectroscopy : - Origin of NMR spectra – chem	•			
	-	ng constant - first and second order spectra - sp		-		
	time - simplification of complex spectra - deuterium substitution - spin decoupling -					
	double resonance - shift reagents - nuclear overhauser Effect - CIDNP - NMR concept					
	of aromaticity – FT Technique.					
		IR Spectroscopy: - Assignment of signals – off–				
Unit - IV		cycles: - General aspects of heterocyclic compou		-		
	•••	and Sulpur heterocyclic compounds. Major class	•	•		
		six member aromatic heterocycles: Knorr-pyrro	•			
	-	s, Hinsberg Thiophene synthesis, Hantzsch pyr	•			
	synthesi	s, Skraup Quinoline synthesis, Bischler-Napierals	ski Isoquinoline	e synthesis.		
Unit - V	-	nthesis and Functional Group Protection Re	-	-		
		es and terminology of retrosynthesis, synthesis		·		
		and two group C-X disconnections, one group	-			
		ections, amine and alkene synthesis, importar	e	•		
	function	al group transposition, important functional group	o interconversi	ons		
	Protect	ing groups: - Protection and deprotection of hydr	oxy, carboxyl,	carbonyl,		
	carboxy amino groups. Chemo- and regioselective protection and deprotection;					
	illustrati	on of protection and deprotection in synthesis				

Reference and Textbooks:	
Ahluwalia, V. K. (2013). Heterocyclic chemistry. Oxford: Alpha Science International.	
Carey, F. A., & Sundberg, R. J. (2007). Advanced organic chemistry. New York: Springer.	
Finar, I. L. (2003). Organic chemistry: Volume 1: The Fundamental Principles. India: Pearson eduatio	n.
Kemp, W. (2008). Organic spectroscopy. Place of publication not identified: Palgrave Macmillan	
March, J. (2005). Advanced organic chemistry: Reactions, mechanisms, and structure. New York: Wil	ey
Mukherji, S. M., & Singh, S. P. (1984). Reaction mechanism in organic chemistry. New Delhi:	
Macmillan	
Parashar, R. K., & Negi, B. (2016). Chemistry of Heterocyclic compounds. New Delhi: Ane Books	
Quin, L. D., & Tyrell, J. A. (2010). Fundamentals of heterocyclic chemistry: Importance in nature and	l in
the synthesis of pharmaceuticals. Hobooken, NJ: Wiley.	
Sharma, Y. R. (2013). Elementary Organic Spectroscopy: Principles and chemical applications. S.I	.: S
Chand & Co.	
Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2015). Spectrometric identification of)f
organic compounds. Hoboken, NJ: Wiley.	
Warren, S., & Wyatt, P. (2013). Organic Synthesis The Disconnection Approach. Hoboken: Wiley.	
Dutcomes > Able to understand photochemistry of olefins and carbonyl compounds and vario	us
types of reactions	
Will have ability to explain the applications of various spectroscopic techniques in the application of various spectr	in
organic chemistry	
Will get the insight knowledge in heterocyclic compounds	
\succ .able to explain the concepts behind the retrosynthesis and functional group	
protection and deprotection.	

Name of the Course Teacher Dr. K. Radhakrishnan/ Prof. K. Gurunathan

	Semester – III			
Course code:				
Objectives Unit - I	 Hydrogen molecule To know the Electronic transitions, Franck-Condon principle. Vertical transitions, Vibrational spectroscopy, Classification of polyatomic rotors and the non-rigid rotor. Explain about Batteries and Fuel Cells, Corrosion and its Protection To make the students understand the Concept of ensembles Partition functions Entropy production, Non-equilibrium stationary states and Onsager's law. Impart knowledge about Crystal structures, Types of defects, superconductors, Meissner effect and BCS theory 			
Omt - I	 Advanced Quantum Chemistry: - Atomic orbitals and their energies: energy levels, ionization energies, shell, subshells, and atomic orbitals. Spectroscopic transitions and selection rule, Structure of many-electron Atoms: - Helium atom, hydrogen molecule ion, hydrogen molecule, Pauli principle, electron affinities, Self-consistent field orbitals. Spectra of complex atoms: spin-orbit couplings and term symbols, selection rules, perturbation theory applications. 			
Unit - II	 Spectroscopy : - Microwave spectroscopy: - The rigid diatomic rotor, Eigen values and Eigen states, selection rules, intensity of rotational transitions, the role of rotational level degeneracy, Classification of polyatomic rotors and the non-rigid rotor. Vibrational spectroscopy: -Vibrational spectroscopy, harmonic and anharmonic oscillators, Morse potential, mechanical and electrical anharmonicity, selection rules. The determination of anharmoncity constant, fundamental, overtones, and Normal modes of vibration. Electronic spectroscopy: - Electronic transitions, Franck-Condon principle. Vertical transitions. Selection rules, parity, symmetry and spin selection rules. Polarization of transitions. Raman spectroscopy: - polarizability and selection rules for rotation and vibrational Raman spectra 			
Unit - III	Applied Electrochemistry: -Batteries and Fuel Cells: - Primary and Secondary Systems - Principles and criteria forthe selection of anodes, cathodes and separators. Basic electrochemical reactions andperformance characteristics of the followingPrimary systems: - Leclanche cell, alkaline batteries (Zn/MnO2 /KOH, Zinc/air).Classifications of Secondary battery and its applications- Basic electrochemical reactionsand performance characteristics of the following Secondary systems: Lead-Acid battery,Ni-Cd battery and Lithium - ion battery–Fuel cells–Introduction – Types of Fuel cells.Corrosion and its Protection: Importance of corrosion studies–EMF and Galvanic Series,Pourbaix diagram for Fe - H2O system – Passivity- Electrochemical methods of corrosionrate measurements by DC and AC methods. Cathodic protection and Anodic protection –principle - design aspects and applications.			
Unit - IV	 Classical and Statistical Thermodynamics: - Maxwell relations ,Le Chatelier principle. Concept of ensembles: Canonical ensembles, Grand Canonical ensembles and thermodynamic quantities, Boltzmann distribution, Bose-Einstein and Fermi-Dirac distributions. Partition functions: - Molecular, Translational, rotational and vibrational partition functions. Ideal mono atomic and diatomic gases, Classical partition function. , Entropy production. 			

Unit - V	Solid state Chemistry: -
	Crystal structures: - Bragg's law, applications, and band structure of solids. Types o
	defects, thermodynamics of Schottky and Frenkel defect formation, Kroger-Vink notation
	for crystal defects Electronic structure of solids- band theory, intrinsic and extrinsic
	semiconductors, p-n junctions.
	Superconductors: - Meissner effect and BCS theory, electrically conducting organic
	solids, Organic charge-transfer complexes, and organic metals.
	nd Textbooks:
	., & Googan, C. (1993). Cathodic protection: Theory and practice. New York: Ellis
Horwood.	
	., Paula, J. D., & Friedman, R. J. (2009). Quanta, matter, and change: A molecular approach
	nysical chemistry. Oxford: Oxford University Press.
	., Paula, J. D., & Keeler, J. (2018). Atkins physical chemistry. New York, NY: Oxford
	versity Press.
	Paula, J. D. (2017). <i>Elements of physical chemistry</i> . Oxford: Oxford University Press.
	N. (1985). An introduction to science of corrosion and its inhibition. New Delhi: Oxonian
Pres	
	13). Fundamentals of Molecular Spectroscopy. New York: McGraw-Hill Education.
	A. (1996). Physical chemistry. New York: McGraw-Hill.
	, & Carrington, A. (2003). <i>Rotational spectroscopy of diatomic molecules</i> . Cambridge: bridge University Press.
	K. (1994). Introductory quantum chemistry. New Dehli: Tata McGraw-Hill
	. (2007). Thermodynamics for chemists. New York: Narahari Press.
	. (2017). Statistical thermodynamics. New Delhi: New Age International (P) Limited.
	(2010). Modern spectroscopy. Chichester: John Wiley & Sons.
	(2014). Principles and prevention of corrosion. Harlow: Pearson.
	(2014). Quantum chemistry. Boston: Pearson.
	1995). Handbook of batteries and fuel cells. New York: McGraw-Hill.
	(1983). An introduction to metallic corrosion and its prevention. New Delhi: Oxford & IBH.
	. (2010). Quantum chemistry. Tunbridge Wells: New age Science.
	(2015). Thermodynamics and statistical mechanics: An integrated approach. Cambridge:
	nbridge University Press.
Silbey, R. J.,	Alberty, R. A., & Bawendi, M. G. (2005). Physical chemistry. New York: J. Wiley.
Smart, L., &	Moore, E. (2017). Solid state chemistry: An introduction. Boca Raton: CRC Press.
West, A. R. ((2014). Solid state chemistry and its applications. Chichester: Wiley.
Outcomes	Recognize atomic orbital and their energies
	 Realize the rules and application of spectroscopy
	Understand the concept of fuel cell and batteries and also know about corrosion
	and its prevention
	 Realize the Concept of ensembles Partition functions
	Understand the Crystal structures, thermodynamics of Schottky and Frenkel defect formation, Superconductors.

Name of the Course Teacher **R. M. Jeyam/ Dr. P. Shakkthivel**

			Semester – III		-
Course code			al Chemistry Practical	Credits: 4	Hours:8
Objectives			aws of thermodynamics and		
			ermodynamics and kinetics		*
			ics, models and approximat	ions are used to e	explain chemica
	-		al properties of matter.		
	Develop of data.	skills in making d	ecisions in the lab, in data a	equisition, and c	ritical evaluation
1.	Kinetics - A	Acid hydrolysis of	ester		
2.	Distribution	n Law - Study of ic	dine – Iodide equilibrium		
3.	Adsorption	- Oxalic Acid /Ac	etic Acid on charcoal using	Freundlich isoth	erm.
4.	Conductom	erty Titration - Ac	id- Alkali titration.		
5.	Conductom	erty - Precipitation	titration.		
6.	Conductom	erty - Displacemer	nt titration.		
7.	Conductom	erty - Determination	on of dissociation constants	of weak acids.	
8.	Potentiome	tric Titrations – Ac	cid- alkali titration		
9.	Potentiome	tric Titrations - Pre	ecipitation titration		
10.	Potentiome	tric Titrations - Re	dox titration.		
11.	Potentiome	tric Titrations - De	termination of dissociation	constant of weak	acids.
12.	Determinat	ion of Molecular w	eight by Rast's Method.		
13.	Constructio	n of phase diagran	n for two/three-component s	systems	
Reference Bo					
•			ys practical physical chemi	stry. 9th ed. Revi	sed and edited
by B.P	P. Levitt. Lond	lon: Longman.			

Gurtu, J. N., & Kapoor, R. (1987). *Advanced experimental chemistry*. Ram Nagar, New Delhi: S. Chand . Matthews, G. P. (1985). *Experimental physical chemistry*. Hong Kong: Oxford University Press

Viswanathan, B. R. (2014). *Practical Physical Chemistry*. Place Of Publication Not Identified: Viva Books.

Outcomes	nes > Developed expertise relevant to the professional practice to chemistry.				
	\triangleright	An understanding of methods employed for problem solving in physical chemistry.			
	\triangleright	Developed an understanding of the breadth and concepts of physical chemistry.			
	\triangleright	Developed skills in procedures and instrumental methods applied in analytical and			
		practical tasks of physical chemistry.			

Name of the Course Teacher **Prof. K. Gurunathan**/ **R. M. Jeyam**

		Elective Course				
Course code: 5	538501	Introduction to Nanoscience and Technology	Credits: 4	Hours: 4		
Objectives	> Und	erstand the essential features of nanotechnology.				
	> To make the students understand the principles behind nanoscience and technology					
	and its application.					
	≻ Emj	 Employ applications of nanoparticles for analysis and sensing techniques, 				
	nan	nanocatalyst, nanomedicine etc.				
	 Impart knowledge about nanoscience and technology. 					
	 Apprehend and explain the biomedical applications of nanotechnology. 					
Unit - I	Introd	iction and History: - Background to nanotechnolo	gy - scientific 1	revolutions –		
		structure-atomic size – bottom up/top down nanotec				
		ental nanotechnology-Evolutionary nanotechnolog		-		
		nce of nanotechnology-Challenging in nanotechnolo	•			
	-	ception of Nanotechnology	6,			
Unit - II		on and growth of Nanosystem: -Basic problems and	nd limitations -	opportunities		
		scale -evolution of band structures and Fermi sur				
		eneous and heterogeneous nucleation-Growth control	-	-		
	-	- Oswald ripening process - influence of reduci	-			
	-	tion- grain growth and sintering precipitation in s		-		
	rule.	tion grain growth and sintering precipitation in s	ond bolddon n	anne rounery		
Unit - III		aterials and classifications: - Carbon Nanotubes (CNT) Motols	(Au Ag Dd		
Umt - 111				-		
	Cu) - Metal oxides (TiO ₂ , CeO ₂ , ZnO, MgO) - Semiconductors (Si, Ge, CdS, ZnSe).					
	Classifications of nanomaterials-zero dimensional-one-dimensional-two dimensional-					
	three dimensional nanostructures- Quantum dots-Quantum wire-Quantum well-					
TT		nductors and ceramics.		. 1 1		
Unit - IV	Special nanomaterials: - Carbon fullerenes-fullerene derived crystals- carbon					
	nanotubes. Micro and Mesoporous material-Ordered mesoporous materials-Random					
	mesoporous materials-crystalline microporous materials.Core/Shell structures-Metal					
	oxide structures-Metal polymer structures-Intercalation compounds-nanograined					
	materia					
Unit - V		als Structure and Properties: - Space lattice and	-	-		
	•	try operation, Structures of common metallic, S				
	superco	nductor materials, Miller Indices, Packing fraction	ons, Formation	of dangling		
	bonds-atom like behavior of nanomaterials-physicochemical properties. Optical					
	properties of nanomaterials-semiconductor-metal nanoparticles-Electrical and electronic					
	properties-Thermal properties-Ferro electric properties-mechanical and magnetic					
	properties.					
Reference and	Textboo	ks:				
Cao, G., & Wai	ng, Y. (20	11). Nanostructures and Nanomaterials. World Scien	tific Series in No	inoscience		
and Nanotechn	ology. do	: 10.1142/7885				
Cao, G., & Wai	ng, Y. (20	11). Nanostructures and Nanomaterials. World Scien	tific Series in No	inoscience		
	-	logy. doi: 10.1142/7885	-			
		ntroduction to nanoscience and nanotechnology. Lon	don: CRC Press	1 9 a		
•		ndré C., & Cademartiri, L. (2009). Nanochemistry: a				
		Cambridge: Royal Society of Chemistry.	T I I			

nanomaterials. Cambridge: Royal Society of Chemistry.

Raghavan, V. (2013). Materials science and engineering a first course. New Delhi: PHI Learning.

- Torres, T., & Bottari, G. (2013). Organic nanomaterials: synthesis, characterization, and device applications. Hoboken, NJ: Wiley.(2010). Morphology Control of Materials and Nanoparticles. Gardners Books.
 - Aceves-Mijares, M., & Caruta, B. M. (2006). *Focus on nanomaterials research*. New York, NY: Nova Science Publ.
 - Binns, C. (2010). Introduction to nanoscience and nanotechnology. Hoboken: John Wiley & Sons.
- Capek Ignác. (2010). Nanocomposite structures and dispersions: science and nanotechnology fundamental principles and colloidal particles. Amsterdam: Elsevier.
- Edelstein, A. S., & Cammarata, R. C. (2002). *Nanomaterials: synthesis, properties and applications*. Bristol: Institute of Physics.

Hornyak, G. L., Dutta, J., & Tibbals, H. F. (2008). Introduction to nanoscience. Boca Raton: CRC Press.

Thomas, S., Rafiei, S., Maghsoodlou, S., & Afzali, A. (2015). *Foundations of nanotechnology*. Oakville, ON, Canada: Apple Academic Press.

Outcomes	Understand how nanotechnology can be tailored and used for biomedical purposes,	
	catalyst, nanorobotics, engineering.	
	Understand the basic nanotechnology and characterization methods.	
	> Understand how nano-relevant instruments such as focused ion beam scanning	
	electron microscopes, atomic force microscopes and optical microscopes can be	
	used in nanotechnology.	
	 Perform simple micro fabrication procedure 	

Course Teacher Prof. K. Gurunathan/M.Chinnadurai

	Elective Course					
Course code:	Synthesis and Characterization Techniques Credits: 4 Hours : 4					
538503	of Nanomaterials					
Objectives	> Understand the application of spectroscopy techniques for analysis of					
	nanomaterials.					
	➤ To know the difference between CVD and MOCVD.					
	> Explain the principles and theory of Raman spectroscopy.					
	> To make the students understand the principles Spectroscopy application of group					
	theory to IR spectral activity of vibrational modes of ammonia molecule, selection					
	rules for vibrational IR and RAMAN spectra, Mutual exclusion rule for molecules					
	with center of symmetry, selection rules for rotational spectroscopy.					
	> To understand the uses of magnetobacteria for synthesis of magnetic nanoparticles.					
	Impart knowledge about sol-gel, co-precipitation methods					
Unit - I	Synthesis-Physical, Chemical & Biological Approaches					
	Physical: Vapor deposition and different types of epitaxial growth techniques (CVD,					
	MOCVD, MBE, ALD)-pulsed laser deposition, Magnetron sputtering - Etching					
	process: Dry and Wet etching,					
	Chemical: Sol- gel processing- Solvothermal, hydrothermal, co-precipitation					
	colloidal precipitation, Spray pyrolysis, sonochemical method, Electro spraying and					
	spin coating routes, Self-assembly, self-assembled monolayers, gas phase synthesis					
	Langmuir-Blodgett (LB) films, templated synthesis					
	Biological : Use of bacteria, fungi, Actinomycetes for synthesis of nanoparticles - use					
	of viruses for the synthesis of nanostructured materials- use of magnetotactic bacteria					
	for synthesis of magnetic nanoparticles- use of natural plants for synthesis of					
	nanoparticles.					
Unit - II	Spectroscopic techniques					
	Principle, theory and instrumentation of UV-Visible spectroscopy-Infra-rec					
	spectroscopy- Atomic Spectroscopy-Photoluminescence spectroscopy-Photo					
	Correlation Spectroscopy-Raman Spectroscopy-NMR spectroscopy-Electron Spin					
	Resonance Spectroscopy-Mass Spectroscopy- Fluorescence spectroscopy.					
Unit - III	Powder X-ray diffraction & Thermo-gravimetric analysis					
	Powder X-ray diffraction Fundamental principal of powder X-ray diffraction-					
	Geometry of crystal-Lattice and crystal system, Lattice planes and direction, inter-					
	planar spacing-X-ray intensities-structure factor polarization factor, multiplicity factor,					
	temperature factor and Lorentz factor. Identification of unknown sample-					
	Determination of crystal structure of cubic system					
	Thermo-gravimetric analysis Thermal analysis, theory and principles of DTA and					
	TGA-factors affecting the position of DT and TG traces - application of DTA and					
	TGA -complementary nature of DTA and TGA- influence of reduced pressure					
	humidity control and heating rate-principle and application of DSC-determination of					
	degree of conversion of high alumina cement-heat flow calibration, temperature					
	calibration					
Unit - IV	Scanning Electron Microscopy & Transmission Electron Microscopy					
	Scanning Electron Microscopy: Basic design of the high resolution scanning electron					
	microscopy-Modes of operation- Backscattered electrons-secondary electrons-X-rays-					

	typical forms of contrast-Resolution and contrast-enhancement-Specimen Preparation,		
1			
L	Replicas Various-application of HR-SEM.		
,	Transmission Electron Microscopy: Basic principles-Modes of operation-interaction		
	of electron with matter-Specimen preparation-Diffraction in imperfect crystals-		
J	Dislocations-precipitates-Structure of grain boundaries and interfaces HR-TEM use in		
1	nanostructures-resolution of electron lens-phase contrast images (lattice fringes).		
Unit - V	Atomic Force Microscopy		
	Basic concepts- modes of operation- Interaction force-AFM and the optical lever-Scale		
	drawing-AFM tip on nanometer scale structures-force curves, measurements and		
	manipulations-different modes of operation -contact, non contact and tapping mode-		
	Imaging and manipulation of samples in air or liquid environments.		
Reference and T			
	chodek, D. L., & Ferreira, P. J. S. G. (2009). Nanomaterials, nanotechnologies and		
•	an introduction for Engineers and Architects. S.I.: Butterworth-Heinemann.		
8			
U U	lamad-Schifferli, K. (2013). <i>Nanomaterial Interfaces in Biology Methods and</i> ols. New York: Humana Press.		
•	Aendham, J., Bassett, J., & Jeffery, G. H. (2007). Vogels textbook of quantitative		
	al analysis. Delhi: Pearson education.		
	st, P. (2018). <i>Atomic force microscopy</i> . Oxford: Oxford University Press.		
). Advanced scanning electron microscopy and x-ray microanalysis. Place of		
-	tion not identified: Springer-Verlag New York.		
	enault André C., & Cademartiri, L. (2015). Nanochemistry: a chemical approach to		
	aterials. Cambridge: Royal Society of Chemistry.		
e	Rodriguez José A. (n.d.). Synthesis, Properties, and Applications of Oxide Nanomaterials. Wiley.		
	subara, E., & Shinoda, K. (2011). X-ray diffraction crystallography: introduction,		
examples and solved problems. Berlin: Springer Verlag.			
	Williams, D. B., Carter, C. B., & Spence, J. C. H. (2009). Transmission electron microscopy. a		
textbool	k for materials science. New York: Springer.		
Zhang, J. Z. (200 Scientif	09). <i>Optical properties and spectroscopy of nanomaterials</i> . New Yersey: World Fic.		
Dobrovolskaia. N	M. A., & McNeil, S. E. (2013). Handbook of immunological properties of engineered		
	terials. Singapore: World Scientific Pub. Co.		
	Nishi, Y. (2008). Handbook of semiconductor manufacturing technology. Boca Raton:		
CRC Pre			
	senko, L., & Brodin, M. (2013). Nanomaterials Imaging Techniques, Surface Studies,		
	lications Selected Proceedings of the FP7 International Summer School		
	hnology: From Fundamental Research to Innovations, August 26-September 2, 2012,		
	<i>Ukraine</i> . New York, NY: Springer New York.		
Dukovei,	Okraine. New Tork, NT. Springer New Tork.		
Kumar, C. S. S. J	R. (2010). Biomimetic and bioinspired nanomaterials. Weinheim: Wiley-VCH.		
	. B. H. A. K. A. R. (2016). Applied spectroscopy and the science of nanomaterials.		
Place of publication not identified: SPRINGER Verlag, SINGAPOR.			
Musa, S. M. (2018). <i>Nanoscale spectroscopy with applications</i> . Place of publication not identified:			
CRC Pre			
	008). Nanoparticles: synthesis, stabilization, passivation, and functionalization.		
	gton, DC: American Chemical Society.		
w asining	, on, DC. American Chemical Society.		

Zhong, WH. (2	2009). Nanomaterials: mechanics and mechanisms. New York: Springer.2012). Nanoscience and nanomaterials: synthesis, manufacturing and industry impacts.			
Lancast	er, PA: Destech Publications.			
Outcomes	Recognize atomic orbital and their energies			
	Realize the rules and application of spectroscopy			
	Understand the concept of fuel cell and batteries and also know about corrosion and its prevention			
	Realize the Concept of ensembles Partition functions			
	Understand the Crystal structures, thermodynamics of Schottky and Frenkel defeet formation. Superconductors			
	defect formation, Superconductors			

Name of the Course Teacher **Prof. K. Gurunathan**

		Elective Course				
Course code:	538507	Nanocomposites	Credits: 4	Hours: 4		
Objectives	≻ Ur	iderstand the essential features of nanocomposite.		·		
	 To make the students understand the principles behind materials involved in nanocomposite. Employ applications of nanocomposite for analysis and sensing techniques, nanocatalyst, nanomedicine etc. 					
	≻ Im	part knowledge about nanoscience and technology.				
	≻ Ap	prehend and explain the biomedical applications of	nanotechnolog	gy.		
Unit - I	Basic	s of NanoComposites: - Nomenclature-Electro	onic and ator	nic structure of		
	aggre	gates and nanoparticles-Properties, features and	processing of	nanocomposites-		
	Samp	e Preparation and Characterization of Structu	ure and Phys	sical properties-		
	-	ning, stability and mechanical properties and appl	-			
	-	omposites.				
Unit - II		Based Nanocomposites: - Metal-metal nanoc	omposites, sa	mple preparation		
		ques and their properties-Metal-Oxide or Metal-				
		s of their preparation techniques and their final		-		
	-	l based glass-metal nanocomposites, its designing		-		
		ical property of fractal based nanocomposites. Co		•		
		omposites.				
Unit - III		ner based nanocomposites: - Definition, Polymer	metal nanoco	mposites, sample		
	-					
		preparation and characterization incorporation of nanomaterials in polymer matrix- Copolymer based nanocomposites; Polymer CNT based composites, their mechanical				
	properties, polymer clay nano-composites and industrial possibilities.					
Unit - IV	Nanocomposite from Bio-materials: - Definition- sample preparation-Natural					
	nanocomposite systems-spider silk, bones, shells; organic-inorganic nanocomposite					
	formation through self-assembly. Bio-mimetic synthesis of nanocomposite material- use					
	of synthetic nanocomposites for bone, teeth replacement.					
Unit - V	Application of nanocomposite: - Electrical, Electronic, Textile, pharmaceutical and					
	energy applications of polymer nanocomposites, polymer metal based nanocomposite.					
Reference and	Textho	oke				
		Designing and engineering metal-based nanocon	nposites for n	anotechnological		
applica			npositios jor n			
		Indrich (2015) Novel nanocomposite coatin	os· advances	and industrial		
Daniel, R., & Musil Jindřich. (2015). <i>Novel nanocomposite coatings: advances and industrial applications</i> . Singapore: Pan Stanford Publishing.						
Kim, J., Ponnamma, D., Sadasivuni, K. K., & Thomas, S. (2015). <i>Graphene-based polymer</i>						
		s in electronics. Cham: Springer.	ne bused pory	1101		
	-	· ·	n and applicat	tions New York		
Koo, J. H. (2006). <i>Polymer nanocomposites: processing, characterization, and applications</i> . New York: McGraw-Hill.						
		15). Handbook of nanoceramic and nanocomposite	coatings and	naterials		
		olymer Nanocomposites based on Inorganic and				
•	& Sons.	orymer runocomposites bused on morganic una	organic mun	ondicituts. John		
-		ructural nanocomposites: perspectives for future	applications	Heidelberg		
Njuguna, J. (2013). <i>Structural nanocomposites: perspectives for future applications</i> . Heidelberg: Springer.						
		lanocomposite membrane technology fundamental	s and applicati	ons Roco Poton		
10wall, F. K. (2017). N	anocomposite membrane technology: fundamentals	s and applicall	ons. Doca Katoli:		

CRC Press is an imprint of the Taylor & Francis Group, an informa business.

Thomas, S. (2013). Advances in Natural Polymers: Composites and Nanocomposites. Berlin: Springer.

Thomas, S., Shanks, R., & Chandrasekharakurup, S. (2016). *Design and applications of nanostructured polymer blends and nanocomposite systems*. Amsterdam: Elsevier.

Trindade, T., & L., D. da S. A. (2011). *Nanocomposite particles for bio-applications: materials and bio-interfaces*. Singapore: Pan Stanford.

Twardowski, T. A. (2007). Introduction to nanocomposite materials: properties, processing, characterization. Lancaster, PA: DEStech.

Yang, J., & Liu, H. (2015). Metal-based composite nanomaterials. Cham: Springer.

Outcomes	Recognize atomic orbital and their energies
	Realize the rules and application of spectroscopy
	> Understand the concept of fuel cell and batteries and also know about corrosion and
	its prevention
	 Realize the Concept of ensembles Partition functions
	> Understand the Crystal structures, thermodynamics of Schottky and Frenkel defect
	formation, Superconductors

Name of the Course Teacher Prof. K. Gurunathan

		Elective Course			
Course code: 5	38506	Application of Nanotechnology	Credits: 4	Hours: 4	
Objectives	 numbers, zero-point energy, orthogonisation and normality, tunneling, perturbation theory. To know the difference between Proper and Improper axis of Symmetry, Principal axis and subsidiary axes Explain the construction of Character Tables for C_{2V} and C_{3V} point group molecules, 				
	 and Great orthogonality theorem and its proof To make the students understand the principles Spectroscopy application of group theory to IR spectral activity of vibrational modes of ammonia molecule, selection rules for vibrational IR and RAMAN spectra, Mutual exclusion rule for molecules with center of symmetry, selection rules for rotational spectroscopy. To understand the Solution and gas phase kinetics, Enzymes, Fast reaction kinetics 				
Unit - I	 Impart knowledge about surface and interfaces, heterogeneous catalysis. Lithography and sensors: - Silicon MEMS fabrication technology, Advanced lithography: Deep UV/E beam/Ion Beam techniques, Dip pen nanolithography-Polymers in Microsystems, Packaging of MEMS devices by anodic/fusion bonding, Pressure sensors and packaging, MEMS performance and evaluation-Surface confined chemical sensors- Nanoparticles sensors- thermal, radiation magnetic, chemical and mechanical nanosensors. 				
Unit - II	Nanomedicine: - Principles of nanomedicine – impact of nanotechnology in medicine- nanomedical perspective and the medical applications- nanoparticles delivery for cancer therapy – Bioactive nanomaterials in medicine- Nanodiagnostics - Nanoarrays for diagnostics-nanoparticles for molecular diagnostics- self-assembled protein nanoarrays- protein nanobiochip - Nanobiosensor-CNT biosensor-DNA biosensor.				
Unit - III	Nano Targe based therap Nanop	pharmaceutical: - Nanoparticles for drug discove ting, Targeted, non-targeted delivery, controlled de compounds for cancer and diabetes - lipid nan y -Gene therapy-nanoparticles drug delivery in car particles and protein interactions-inter relationship anopharmaceutical development.	ry – Nanotech rug release-pro oparticles - v ardiology and	otein and peptide accination - cell vascular disease-	
Unit - IV	Environmental and Bio-compatibility: - Degradation of hazardous organic-pollution abatement- removal of bacteria and microbes-photocatalytic decontamination-heavy metal removal-detection and extraction of pesticides from water-Fuel cell application-thermoelectric and piezoelectric application-chemical and electrochemical sensor using nanomaterials. Antibacterial, antimalarial, antiviral and anticancer activities using nanomaterials.				
Unit - V	photon memo and fl with e	electronics: - Nanoelectronics-Microelectronic nics-photolithography-carbon nanotubes (CNT) ries-dye sensitized solar cells-Physical concepts-Q ux-electrons in potential well-photons interacting lectrons in solids-diffusion processes-Effects on stro ported Nanoparticles- Size and confinement Effects 42	in electron Quantization o ructure and Mo	ic applications- f action, charge	

Reference and Textbooks:

Bawa, R., Audet	idette, G. F., Rubinstein, I., & Reese, B. E. (2016). <i>Handbook of clinical nanomedicine</i> .				
Singapore:	re: Pan Stanford Publishing.				
Demetzos, C. (20	. (2016). Pharmaceutical nanotechnology fundamentals and practical applications.				
Singapore:	ingapore: Adis.				
Fryxell, G. E., &	G. E., & Cao, G. (2007). Environmental applications of nanomaterials: synthesis, sorbents and				
sensors. Le	ondon: Imperial College Press.				
Goser, K., Dienste	uhl, J., & Glösekötter Peter. (2004). Nanoelectronics and Nanosystems: from transistors				
to molecular and	quantum devices. Berlin: Springer.				
Jain, K. K. (2008	3). The handbook of nanomedicine. Totowa, NJ: Humana Press.				
	Mems and nanotechnology-based sensors and devices for communications, medical and e applications. Boca Raton: CRC Press.				
Kalantar-zadeh, K	K., & Fry, B. N. (2008). Nanotechnology-enabled sensors. New York: Springer.				
	8). Nanopharmaceutics: the potential application of nanomaterials. Singapore: World				
Scientific					
Ninan, N., & Hag	hi, A. K. (2012). Nanomedicine and Drug Delivery. Hoboken: Apple Academic Press.				
-	2016). Biological and pharmaceutical applications of nanomaterials. Boca Raton: CRC				
Press.					
Shoseyov, O., &	Levy, I. (2008). Nanobiotechnology: bioinspired devices and materials of the future.				
•	J: Humana Press.				
	2). Patenting nanomedicines: legal aspects, intellectual property and grant				
	ies. Heidelberg: Springer.				
Sutariya, V. B., a	& Pathak, Y. (2015). Bio-interactions of nanomaterials. Boca Raton, FL: CRC Press.				
Outcomes	Understand application of wave mechanics.				
	➢ Realize the difference between different axis of symmetry and how to represent				
	matrix				
	> Construct Character Tables for C_{2V} and C_{3V} point group molecules				
	Realize the SALC procedure and application				
	 Recognize the Michaelis-Menten mechanism of enzyme catalysis, catalytic 				
	efficiency of enzymes, mechanisms of enzyme inhibition.				
	enterency of enzymes, meenamisms of enzyme minoruon.				

Name of the Course Teacher **Prof. K. Gurunathan/M. Chinnadurai**

	Semester- III		
Course code: 538701	Physics and Chemistry of nanomaterials	Credits: 3	Hours: 3
Objectives	 To Unterstand the physical and chemical propertie To Understand the quantum mechanical theories o To explain the special nanomaterials. To know the applications of nanomaterials. To Understand the Nanoelectromechanical system 	f nanomaterials	
Unit – I	Properties of materials:- Size dependent properties – Crystal structure - Energy band – magnetic property – Electron related chemical property – colloids – concepts of nanomaterials		
Unit – II	Quantum mechanical aspects:-Simulation of the properties of molecular clusters-Formation of energy gap - Preliminary aspects of lithography - Confinementeffects -Discreteness ofenergy levels -Evaluation of future prospects.		
Unit – III	Special nanomaterials:- Carbon fullerenes – Carbon nanotubes – Zeolites – Metal oxide structures – Metal polymer structures – Oxide polymer structure.		
Unit – IV	Application of nanomaterials (1):- Molecular electronics and nanoelectronics – Nanobots – Biological applications of nanoparticles – Quantum device: Quantum well, Quantum dots – Photoelectrochemical cell.		
Unit – V	Application of nanomaterials (2):- Catalysis - sensors – Fundamentals of Microelectromechanical (MEMSs) – Nanoelectromechanical system (NEMSs)		
Charles P.Poole Fahrner, W.R. (Textbooks (APA format):- Jr & Frank J.Owens. (2007). <i>Introduction to Nanotechn</i> 2006). <i>Nanotechnology and Nanoelectronics</i> . Springer.		ndia Pvt.Ltd.
Kittel, C. (1996) Mannhold, R. (2	(2004). Nanostructures and Nanomaterials. Imperial Co.). Introduction to solid state physics. Wiley – Interscience 2003). Microwaves in Organic and Medicinal Chemistry	ce . Wiley – VCH	
<i>Materials</i> . Sprin Wilson, M., Kan	nagara, K., & Geoff Smith. (2005). Nanotechnology basi		
technology. Ove Outcomes	 Will be able to study the physical and chemical pro Recall the quantum mechanical theory of Nanosca Will be able to know the applications of special na Recall the informations of nanoelectromechanical 	le materials nomaterials	materials

Name of the course Teacher

Prof. K.Gurunathan

	Semester- II				
Course code:	Applications of Spectroscopy in Materials	Credits: 2	Hours: 3		
538702	Chemistry				
Objectives	To Unterstand the principles of raman spectrosc	copy			
	➢ To Understand the behavior of organic compound in nmr spectroscopy				
	To explain the theory and applications of epr technique				
	To know the knowledge about applications of n	-			
Unit – I	Raman spectroscopy: Principles and applications				
	inorganic molecules, predicting number of active modes of vibrations,				
	analysis of representative spectra of metal complex				
	functional groups at the coordination sites; applicat	tion of isotop	ic		
	substitution.				
Unit – II	NMR Spectroscopy: ¹ H NMR spectroscopy –	-			
	number of signals, peak area, multiplicity and				
	geminal, vicinal and long range coupling – factors that affect these				
	parameters $-{}^{13}$ C NMR spectra – broad band and or comparison of ¹ H and ¹³ C NMP spectra – at				
	- comparison of ¹ H and ¹³ C NMR spectra - chemical shifts - gamma				
	gauche effect. Simplification of complex NMR spectra – Shift reagents – high fields – deutration – decoupling				
Unit – III	high fields – deutration - decoupling.EPR Spectroscopy: Electron paramagnetic resonance (EPR) spectroscopy				
	of organic and inorganic compounds with unpaired electrons -				
	determination of electronic structure, Zeeman splitting, g-values, hyperfine				
	and super hyperfine coupling constants, practical considerations of				
	measurements, and instrumentation - applications to organic radicals				
	naphthyl, DPPH and inorganic compounds, Cu, Mn and V complexes.				
Unit – IV	Mass Spectroscopy: Mass spectrometry, basic	c principles,	ionization		
	techniques, isotope abundance, molecular ion, fra	gmentation p	processes of		
	organic molecules, deduction of structure t	hrough mas	ss spectral		
	fragmentation, high resolution MS, soft ionization methods, ESI-MS and				
	MALDI-MS, illustrative examples from macromolecules and				
	supramolecules, studies of inorganic/coordinati	on and org	anometallic		
	representative compounds.				
	Mossbauer spectroscopy - Mossbauer effect, reco				
	absorption, hyperfine interaction, chemical is		e		
Linit V	hyperfine and quadruple interaction and interpretat				
Unit – V	Structure elucidation of organic compounds using t	$u \in U \vee - V IS,$	ik, 1H &		
	13C NMR and Mass spectroscopic techniques. Structure elucidation of inorganic compounds using	a the UV_VI			
	Raman, NMR, EPR and Mass spectroscopic techni		5, 118,		
	- Kaman, Mark, Er K and Mass specifoscopic techni	Yuus			

Reference and Textbooks (APA format):-

Abragam, A., & Bleaney, B. (2013). *Electron paramagnetic resonance of transition ions*. Oxford: Clarendon Press.

Banwell. (2013). *Fundamentals of Molecular Spectroscopy*. New York: McGraw-Hill Education.

Drago, R. S. (1992). Physical methods for chemists. Saunders College Pub.

Günther H. (2013). *Nmr Spectroscopy: Basic Principles, Concepts and Applications in Chemistry*. Somerset: Wiley.

Jayprakasha, G. K., Patil, B. S., & Pellati, F. (2014). *Instrumental methods for the analysis and identification of bioactive molecules*. Washington DC: American Chemical Society. Jeffery, G. H., & Vogel, A. I. (1989). *Vogels textbook of quantitative chemical analysis*. Harlow: Longman.

Kemp, W. (1995). Organic spectroscopy. New York: W.H. Freeman.

Rouessac, F., Rouessac, A., & Brooks, S. (2014). Chemical analysis: modern

instrumentation methods and techniques. Chichester: John Wiley and Sons, Ltd.

Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). *Spectrometric identification of organic compounds*. Hoboken, NJ: John Wiley & Sons.

Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998). *Principles of instrumental analysis*. Philadelphia ;: Harcourt Brace College Pub.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). *Fundamentals of analytical chemistry*. Belmont, CA.: Brooks/Cole, Cengage Learning.

Valcarcel, M., Kellner, R., Mermet, J.-M., Otto, M., & Widmer, H. M. (2020). *Analytical Chemistry A Modern Approach to Analytical Science*. Weinheim: Wiley-VCH. Willard, H. H. (2012). *Instrumental methods of analysis*. New Delhi: CBS.

Outcomes	\triangleright	Will be able to study the physical methods for identification of organic
		and inorganic compounds
	\triangleright	Will be able to know the basic principles involved in spectroscopy
	\triangleright	Will be able to know the applications of spectroscopic techniques.

Name of the course Teacher

Prof. K.Gurunathan

M. Sc (Chemistry) with specialization in Nanoscience & Technology & M.Phil (Chemistry)with specialization in Nanoscience & Technology)

Sl. No.	List of Members			
1.	Dr. K. Gurunathan (<i>Chairman</i>) Prof & Head Dept. of Nanoscience & Technology Alagappa University Karaikudi			
	Dr. M. Ashokkumar(<i>Foreign Subject</i> <i>Expert</i>) Professor, Department of Chemistry, University of Melbourne, Australia.			
2.	Dr. P. Shakkthivel (<i>Membe</i> r) Professor, Dept. of Nanoscience & Technology, Alagappa University, Karaikudi Dept. Faculties			
3.	Prof. S. Muthusamy (<i>Indian Subject</i> <i>Expert</i>) Professor, Department of Chemistry, Bharathidasan University, Trichy.			
4.	Dr. S. Murugesan (<i>Indian Subject</i> <i>Expert</i>) Professor, Department of Inorganic Chemsitry Madurai Kamarajar University, Madurai			
5.	Dr. S. Ravichandran(<i>Indus/R&D</i> <i>Expert</i>) Principal Scientist, Electro Inorganic Division CSIR-CECRI Karaikudi – 630 006.			

List of Board Based Board of studies

Brief- Bio-Data

Dr. K. Gurunathan

Professor & Head, Special Officer (Projects) Department of Nanoscience & Technology Science Campus, Alagappa University Karaikudi - 630 003

Tamil Nadu, INDIA

Academic Qualifications:

Email: kgnathan27@rediffmail.com Ph.D (Chemistry-Energy) Highly Commended, 1994, University of Madras, Chennai M.Sc (Chemistry), 74 %, 1986, Madurai Kamaraj University, Madurai B.Sc (Chemistry), 79%, 1984, Madurai Kamaraj University, Madurai

Previous Post: Scientist & Program Coordinator, C-MET, Pune

.Teaching Experience: 14 Years

Research Experience: 31 Years

Additional Responsibilities

- Member of Syndicate, Finance Committee (2016-19) 1.
- 2. Member of Senate, Member of Standing Committee
- 3. Member of IQAC
- 4. Member of University & Dept. Admission committee
- Member of University & Dept. Purchase committee 5.

Research Interest: Photocatalysis, Hydrogen Energy, Nanosensor, Nano- Solar Cells, Conducting

polymer Nanocomposites for Renewable energy.

Distinctive Achievements / Awards

- BOYSCAST Fellowship (DST, New Delhi) for the year 1999-2000. The work was 1. carried out in University of Texas at Austin, Austin, TX, USA during March 2000-March 2001 in Lithium battery, Supercapacitor and cathode materials for Solid oxide fuel cell.
- 2. Brain Pool scientist by Brain Pool program of KOFTS, South Korea, during July 2005-June 2006 in "Development of Efficient Visible photocatalysts for Hydrogen Generation" The work was carried out in Korea Research Institute of Chemical technology (KRICT), Daejon, S. Korea.
- 3. Awardee of "Rastriya Nirman Rattan" by Economic Growth Society of India, Delhi awarded during the National seminar on "Individual achievements for Economic & Social Development" on 26th August, 2012 at Delhi.
- 4. Fellow, Academy of Sciences, Chennai, 2018

Cumulative Impact Factor (as per JCR) : 251	
h-index 11	
i10 index 14	
Total Citations: 1281	
Ph.D Guidance : Awarded 4; Ongoing -4	
No. of Research Publications in Intl. Journals	80
No. conference attended/ presented	225
Guest/Invited lecture delivered	60
Life Fellow in Professional Society	: 4 (SAEST,MRSI, ISCA,ASC)

Membership in Professional Society

13

Publication (Listed Few)

- 1. Interactive Studies on Synthetic Nanopolymer decorated with Edible Biopolymer and its Selective Electrochemical determination of L-Tyrosine" Scientific Reports-Springer Nature 2019(Accepted)
- 2. Biodiesel production from Ulva linza, Ulva tubulosa, Ulva fasciata, Ulva rigida,Ulva reticulate by using Mn₂ZnO₄ heterogenous nanocatalysts, **Fuel** https://doi.org/10.1016/j.fuel.2019.115744
- **3.** CuO–ZnO p–n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature, Journal of Materials Science: Materials in Electronics, **J. Materials Science: Materials in Electronics (2019) 30:9989–9998**
- 4. A.J. Heiner, K. Gurunathan, Fabrication of Room Temperature LPG Gas sensor based on Pani – CNT – V2O5 hybrid nanocomposite, Appl. Nanosci. https://doi.org/10.1007/s13204-019-00967-w
- 5. Effective harvesting of UV induced production of excitons from Fe3O4 with proficient rGO-PTh acting as BI-functional redox photocatalyst, Renewable energy, doi.org/10.1016/j.renene. 2017.09.031

Prof. Dr. Muthupandian Ashokkumar

Professor & Deputy Head of School School of Chemistry, The University of Melbourne, VIC 3010, Australia **Email:** masho@unimelb.edu.au

ProfessorMuthupandianAshokkumar(Ashok) is a PhysicalChemist who specializes in

Publication Citations (As on Sep.2019)	9536
h-index	54
i10-index	234

Sonochemistry,

teaches undergraduate and postgraduate Chemistry and is a senior academic staff member of the School of Chemistry, University of Melbourne. He is also one of the Associate Deans (International) in the Faculty of Science. Ashok is a renowned sonochemist who has developed a number of novel techniques to characterize acoustic cavitation bubbles and has made major contributions of applied sonochemistry to the Materials, Food and Dairy industry. He has received about \$ 15 million research grants to support his research work that includes several industry projects. He has edited/co-edited several books and special issues for journals; published ~320 refereed papers in high impact international journals and books; and delivered over 150 invited/keynote/plenary lectures at international conferences and academic institutions. Ashok has successfully organised 10national/international scientific conferences/workshops and managed a number of national and international competitive research grants.

Education and training

- PhD, University of Madras 1989
- MSc, Madurai-Kamaraj University 1984
- BSc, Madurai-Kamaraj University 1982 Awards and honors
- ➢ Ian Potter Foundation, 1997
- Grimwade Prize in Industrial Chemistry.
- ➢ He is a Fellow of the RACI since 2007.
- Royal Australian Chemical Institute. Member since 2004.
- European Society for Sonochemistry. Member 2000

Most cited publications (Listed few)

- The use of ultrasonics for nanoemulsion preparation Published in Innovative Food Science & Emerging Technologies in April, 2008, doi.org/10.1016/ J.IFSET.2007.07.005.
- 2. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate, Published in Ultrasonics Sonochemistry in September, 2011, doi.org/10.1016/J.ULTSONCH.2010.12.016.
- 3. The characterization of acoustic cavitation bubbles An overview Published in Ultrasonics Sonochemistry in July, 2011, doi.org/10.1016 /J.ULTSONCH. 2010.11.016

4. An overview on semiconductor particulate systems for photoproduction of hydrogen Published in International Journal of Hydrogen Energy in June, 1998, doi.org/10.1016/S0360-3199(97)00103-1.

Brief- Bio-Data

Dr. P.SHAKKTHIVEL Ph.D.,

Professor, Department of Nanoscience and Technology Science Campus, Alagappa University,

Karaikudi -630 002.

E-mail: apsakthivel@yahoo.com

Academic Oualifications:

Years of Experience

Teaching: 12 years, Research: 20 years Administrative Experience:

- i) Controller of Examination- Alagappa University, Karaikudi, INDIA 21.12.2017 -2/10/2018
- ii) Chief Warden Alagappa University Hostels, Karaikudi, Jan. 2016-Dec.2017

M.Sc., Ph.D., - Earned in Electrochemistry from Alagappa University, India (2001). (PG- Highest credit holder in the University)

Awards/ Fellowships Received

- 1. Visiting Professor Ming Chi University of Technology, Taiwan, 2018
- 2. Dongguk University Foreign Professor Fellow- 2015
- 3. Brain Korea 21 fellowship 2007
- 4. Taiwan National Science Council Post Doc.fellowship-2006.
- 5. Marquis Who's Who in the World- name placed in 2009 & 2017 issues.

Area of Research Interest:

Li-ion Batteries, Magnetic Nanoparticles & Targeted drug Delivery

Modified electrodes & Bio-molecule diagnosis

Membership in Professional Bodies: 5 No.s

Guidance Rendered: Ph.D – 5 Awarded, 4-Ongoing

Extension Activities/ Invited Lectures: 25 National and International

Books / Chapter written

Book Title: Biocompatible Nanomaterials Synthesis, Characterization and Applications;

Chapter title: Synthesis, characterization and Application of Biocompatible Magnetic Nanoparticles, Page 171-208, Nova Science Publisher Inc., Newyork.

No. of Research Publications in Intl. Journals	61
No. conference attended/ presented	85
Guest/Invited lecture delivered	56

Brief- Bio-Data

Profile

Dr.Sengodagounder Muthusamy Professor Department of Chemistry Bharathidasan University Tiruchirappalli – 620 024 Tamil Nadu, Email: muthu@bdu.ac.in (or) smuthus@yahoo.com Teaching Experience : 14 Years Research Experience : 27 Years Academic Oualifications :

Publication Citations (As on Sep.2019)	2102
h-index	25
i10-index	63

Certificate in Hindi(Hindi Teaching Scheme, New Delhi), German(Gothe Institute, Germany) 1986: M.Sc. Chemistry, Bharathiar University, Coimbatore - 641 046 1992: Ph.D. Organic Chemistry, University of Madras, Chennai – 600 005

Areas of Research

Development of macrocycles and supramolecular chemistry \checkmark Synthesis of new molecules with stereoselectivity \checkmark Chemistry of carbenoids and carbocations \checkmark Metathesis reactions \checkmark Green Chemistry

Distinctive Achievements / Awards(Listed few)

Royal Society-INSA fellowship, University of Manchester, UK, 2009 • CRSI Bronze Medal lecture award, Indian Institute of Technology, Mumbai, 2006 • Prof. D. K. Banerjee Memorial Lecture Award, IISc, Bangalore, 2003 • Royal Society-INSA exchange fellowship, University of Exeter, UK, 2001 • CSIR Young Scientist Award in Chemical Sciences, New Delhi, 1998 • CSIR Pool Officership, University of Hyderabad, Hyderabad, 1995 • Alexander von Humboldt Postdoctoral Fellowship, Germany, 1993 • CSIR-UGC National Eligibility Test, New Delhi, 1988.

Patents

- Jasra, R. V.; Muthusamy, S.; Badheka, Y. M. "A process for the preparation of an acylated aromatic ether using clay based catalyst" Patent granted in India, Pat No. 244658, 14 Dec 2010
- 2. Jasra, R. V.; Muthusamy, S.; Badheka, Y. M. "Clay based eco-friendly catalytic process for the acylation of aromatic ethers to produce acylated aromatic ethers" Patent granted in USA, USA Pat. No. 6,730,814, 4 May 2004
- 3. Mehta, G.; Maiya, B. G.; Muthusamy, S.; Chanon, M.; Julliard, M. "Novel hybrid molecules of a photosensitizer and a chemotherapeutic agent useful for chemotherapy and photodynamic therapy against cancer and allied diseases and process for their preparation" Patent
- 4. granted in France, Pat. No. FR 9807228, 9 June 1998.

<u>Profile</u>			-		ALCON.
Dr. S. Murugesan	Publication				
Professor	Citations (As on	881			(See
Department of Inorganic	Sep.2019)		Chemistry		(Trip)
School of Chemistry					A STATE
Mobile No:+91-9444451460	h-index	17			
Email: smsan@mail.com					
	i10-index	23			1 del
Educational Qualifications :		_	M.Sc., B.Ed.,	Ph.D.	
Professional Experience :	<u></u>		Research-	20	Years;

HONORS/AWARDS/RECOGNITIONS

- Visiting Researcher award Royal Inst. of Tech., Stockholm, Sweden, 2005-2007
- DST Young Scientist award, 2012

Active reviewer for 20 Elsevier Science Journals, two ACS Journals and two Taylor & Francis Journals

PUBLICATIONS (Listed Few)

Teaching-15 years

- 1. M. Karuppuraja, S. Murugesan, Template free solvothermal synthesis of single crystal magnetic Fe3O4 hollow spheres, their interaction with bovine serum albumin and antibacterial activities, J. Saudi Chem. Soc. 2018 (In Press) Imp. Fac. 2.88
- 2. K. Kumar, S. Murugesan, Synthesis, characterization and anti-bacterial activity of divalent transition meta complexes of hydrazine and trimesic acid, J. Saudi Chem. Soc. 2018, 22, 16-26.IF: 2.88
- Siva, P. KottalaVijaya, V. Sadhasivam, S. Balakrishnan, C. Chithiraikumar, S. Murugesan, Enantioselective Synthesis of Dihydroquinazolinone derivatives Catalyzed by Chiral Organocatalyst, New J. Chemistry, 2017, 41 7980-7986. Imp. Fac. 3.27
- P. KottalaVijaya, S. Murugesan, A. Siva, Highly Enantioselective Asymmetric Henry Reaction Catalyzed by Novel Chiral Phase Transfer Catalyst Derived from Cinchona Alkaloids, Organic &Biomolecular Chemistry, 2016 14, 10101-10109. Imp. Fac. 3.56
- 5. P. KottalaVijaya, K. Duraimurugan, A. JesinBeneto, V. Sadhasivam, S. Murugesan, A. Siva, New quaternary phosphonium salt as multi-site phase-transfer catalyst for various alkylation reactions, Research on Chemical Intermediates, 2016, 42, 8345-8358. Imp. Fac. 1.37

INTELLECTUAL PROPERTY RIGHTS (Patents)

P. Maruthamuthu, B. Muthuraaman, S. Ganesan, S. Anandan, S. Murugesan, J. Madhavan, S.A. Suthanthiraraj, An improved solid-state polymer composition; A process for its preparation and an improved dye-sensitized solar cell, Patent No. 266300 (2728/CHE/2007) dt. 22.11.2007

Profile		
Dr. S Ravichandran	Publication Citations	1295
Principal Scientist	(As on Sep.2019)	1295
CSIR-CECRI	_	
Karaikudi-India	h-index	16
Email:sravi@cecri.res.in		
	i10-index	29

Area of Research

Materials Electrochemistry Energy storage and conversion devices

Electrochemical water treatment

Current Projects

1. Design and development of electrodes and electrolytes for water electrolysis to generate Hydrogen and hydrogen peroxide for sustainable energy and public hygiene - XII five year plan by Solar Energy to Chemical Energy Conversion – TAP SUN – CSIR.

Latest publication

- Morphology-Dependent Photoelectrochemical and Photocatalytic Performance of γ-Bi2O3 NanostructuresB Jansi Rani, ES Babu, M Praveenkumar, S Ravichandran, G Ravi, ...Journal of nanoscience and nanotechnology 20 (1), 143-154
- BiVO4 Nanostructures for Photoelectrochemical (PEC) Solar Water SplittingApplicationsBJ Rani, M Praveenkumar, S Ravichandran, G Ravi, RK Guduru, ...Journal of nanoscience and nanotechnology 19 (11), 7427-7435
- 3. Components of the diffuse ultraviolet radiation at high latitudes, MS Akshaya, J Murthy, S Ravichandran, RC Henry, J Overduin, Monthly Notices of the Royal Astronomical Society 489 (1), 1120-1126
- 4. Electrochemical surface modification of carbon for enhanced water electrolysisSS Zance, S Ravichandran, Applied Physics A 125 (7), 456
- 5. WO3 nanocubes for photoelectrochemical water-splitting applications, BJ Rani, MP Kumar, S Ravichandran, G Ravi, V Ganesh, RK Guduru, ...Journal of Physics and Chemistry of Solids
- Ultrafine M-doped TiO2 (M= Fe, Ce, La) nanospherephotoanodes for photoelectrochemical water-splitting applications, BJ Rani, M Praveenkumar, S Ravichandran, V Ganesh, RK Guduru, ...Materials Characterization 152, 188-203
