

ALAGAPPA UNIVERSITY

(A State University Established in 1985) Karaikudi - 630003, Tamil Nadu, India

DEPARTMENT OF MATHEMATICS

M.Sc., MATHEMATICS

[Choice Based Credit System (CBCS)] [For the candidates admitted from the academic year 2019 -2020]

Panel of Members-Broad Based Board of Studies

Chairperson

Dr. N. Anbazhagan, Professor & Head, Department of Mathematics, Alagappa University, Karaikudi. Teaching Experience: 17 years, Research experience: 17 years, Area of Research: Stochastic Modeling, Data mining.

Foreign Experts

Prof. Wan Ainun Binti Mior Othman, University of Malaysia (UM), <u>wanainun@um.edu.my</u>. Working Experience: 26 Years, Research Experience: 26 Years, Area of Research: Algorithms and Cryptology [Cryptography and Computer Aided Geometric Design (CAGD)].

Indian Experts

Dr. D. Arivudainambi, Professor, Department of Mathematics (CEG Campus), Anna University, Chennai. Teaching Experience: 19 years, Research experience: 19 Years, Area of Research: Computer Networks, Queuing theory, Stochastic Processes and its applications, Operations Research, Cloud Computing, Wireless Sensor Networks Evolutionary Algorithms and Adhoc Networks.

Dr. V. Lakshmana Gomathi Vinayagam, Department of Mathematics, National Institute of Technology, Tirchirapalli. Teaching Experience: 18 Years, Research experience: 18 Years, Area of Research: Fuzzy Topological Structures, Fuzzy Algebraic Structures, Fuzzy Mathematical Modelling: Theory and Applications.

Members

Dr. C. Ganesa Moorthy, Professor, Department of Mathematics, Alagappa University, Karaikudi. Teaching Experience: 34 years, Research Experience: 29 years, Area of Research: Graph Theory, Topology and Functional Analysis.

Dr. J. Vimala, Assistant Professor, Department of Mathematics, Alagappa University, Karaikudi. Teaching Experience: 15 years, Research Experience: 12 years, Area of Research: Algebra –Lattice Theory, Fuzzy Algebra, Decision Theory and Soft computing.

Dr. R. Raja, Assistant Professor, Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi. Teaching Experience: 8 Years, Research Experience: 7 years, Area of Research: Abstract& Fractional Differential Equations, Stability Analysis of Dynamical Systems, Neural Networks, Synchronization Theory, Mathematical Modeling and Population Systems, Genetic Regulatory Networks, Complex Dynamical Networks and Multi-Agent S ystems.

Dr. B. Sundaravadivoo, Assistant Professor, Department of Mathematics, Alagappa University, Karaikudi. Teaching Experience:16 years, Research Experience: 1 year, Area of Research: Abstract & Fractional Differential Equations Control Theory, Mathematical Modelling and Perturbation Theory.

Dr. S. Amutha, Assistant Professor, Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi. Teaching Experience: 10 years, Research Experience: 10 years, Area of Research: Graph Theory, Domination Theory, Algorithmic Graph theory, Discrete Mathematics, Cryptography.

Dr. R. Jeyabalan, Assistant Professor, Department of Mathematics, Alagappa University, Karaikudi. Teaching Experience: 4 years, Research Experience: 4 years, Area of Research: Magic Labeling Graph Theory, Fuzzy Topology and Fuzzy Magic Labeling Graph Theory.

Dr. M. Mullai, Assistant Professor, Directorate of Distance Education, Alagappa University, Karaikudi. Teaching Experience:15 years, Research Experience: 12 years, Area of Research: Algebra & Fuzzy Algebra, Operations Research, Mathematical Modelling, Neutrosophic sets (Neutrosophic Inventory, Neutrosophic Graph theory, Neutrosophic Optimization, Neutrosophic Adhoc networks)

Co opted Member from the Industry:

Mr. N.S. Babu, BITS Pilani_V2A, Total Experience: 23 Years, developing Finacle Core Banking product that includes Retail banking, Retail Lending, Corporate Lending, Loan origination systems Liquidity Management Systems, Payment systems, Trade Finance and Islamic Banking Compliance and Regulations for various markets.

Alumni

Dr. A. Tamilselvan, Professor & Head, Department of Mathematics, Bharathidasan University, Tirchirapalli. Teaching Experience: 18 years, Research Experience: 18 years, Area of Research: Differential Equations, Numerical Analysis, Fractional Differential Equations, Finite Difference Methods, Finite Volume Methods.

Ex-officio Member

Dr. E. Kannapiran, Professor and Co-ordinator, Curriculum Development Cell, DistanceEducation, Alagappa University, Karaikudi Teaching Experience: 18 years, ResearchExperience: 20 years, Area of Research: Marine Biology: Marine Microbiology, Coral Reef and Marine Fouling.

REGULATIONS & SYLLABUS

For the candidates admitted from the academic year 2019 onwards]

1. Programme general objectives

The general objective of the M.Sc. program in Mathematics is to flourish strong-minded graduates with high level of analytic and technical skills required for the program. Moreover this program will furnish them with the necessary background for further study in Mathematics and enhance their research capabilities. Also it enables them to function effectively as teachers by giving seminar sessions in the related subjects. Hence the curriculum is designed to assist the students in understanding the vital concept of Algebra, Differential Equations, Analytical Number Theory, as well as C++, IP. At the end of the program, the student will gain in-depth knowledge in Mathematics subjects and play an active role in Mathematician research, government or non-government organization and private sectors.

2. Programme specific objectives

- To provide the student with pertinent information in the field of Mathematics.
- To teach the student with a broad understanding of Mathematical and their interactions with the Equations.
- To include methods of facilitating learning such as projects, group work and participative learning.
- To establish inter-disciplinarily between mathematics and other subjects from Humanities and the Social Sciences.
- To learn to apply mathematics to real life situations and help in problem solving.

3. Programme outcomes

On successful completion of the programme:

- The students will learn functions of real and complex variables, different types of integration.
- They knew the Introduction of Linear Algebra and study linear transformation on ndimensional vector spaces.
- The students can solve various constrained and unconstrained problems in single variable as well as multivariables.
- They will Formulate simple stochastic process models and provide qualitative and quantitative analyses of some models.
- Also by the understanding of Numerical Analysis they will ready to develop computational skill to solve science and engineering problems.

4. Eligibility and Duration of the Programme

A candidate who has passed the undergraduate course like B.Sc., Mathematics / B.Sc., Mathematics (Computer Applications) degree of this University or any of the above degree of any other University shall be eligible for admission in Master of Science (M.Sc.,) Degree in Mathematics of this University. The duration of this program is two years. Students will be admitted to the M.Sc. program either directly (Mode I) or through an entrance test (Mode II).

5. Teaching and Learning Methods

The method of teaching is by giving lectures, tutorials, seminars and supervised research projects. Moreover, extensive use is made of IT and a wide range of materials is available to enable students to study at their own place and in their own time to enhance and extend the material taught formally.

6. Examinations

The examinations shall be conducted for theory to assess the knowledge acquired during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II). The internal assessment shall comprise of maximum 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

6.1. Internal Assessment

Average marks of two CIA test	10 marks
Attendance	5 marks
Seminar/group discussion/quiz	5 marks
Assignment/field trip report/case study	5 marks
report.	
Total	25 marks

6.2. External Examinations

The external examinations of theory shall be conducted for three hours duration to each paper at the end of each semester. The external examinations shall comprise of a maximum of 75 marks for each subject. The candidate failing in any subject will be permitted to appear for each failed subject in the subsequent examination. At the end of the fourth semester, the project work viva-voce examination will be held based on the dissertation report submitted by the student. Two examiners (one internal and one external) will jointly conduct the viva-voce examination for evaluation.

6.2.1 Scheme of External examination

Section	No. of questions	Choices if any	Marks per questions	Total (75)
А	10	Answer all questions	2	20
В	5 (either (a) or (b) type)	Answer (a) or (b) in each question	5	25
C	5	Answer any three questions	10	30

7. Passing minimum

- a) For Internal and External Examination, Passing Minimum shall be of 50% (Fifty Percentage) of the maximum marks prescribed for the paper.
- b) In the aggregate (External + Internal), the passing minimum shall be of 50% for each Paper/Practical/Project and Viva-voce.
- c) Grading shall be based on overall marks obtained (internal + external).

8. Dissertation Work (Maximum Marks: 100)

The duration of the Dissertation Work shall be a minimum of three months in the fourth semester.

a) Plan of work

The candidate shall undergo Dissertation Work during the fourth semester. The candidate should prepare a scheme of work for the dissertation and should get approval from the guide. The candidate, after completing the dissertation work, shall be allowed to submit to the university at the end of the fourth semester. If the candidate is desirous of availing the facility from other universities/laboratory, they will be permitted only after getting approval from the guide. In such a case, the candidate shall acknowledge the same in their dissertation.

b) No. of copies of dissertation

The candidate should prepare three copies of the dissertation and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, and the student shall hold one copy.

c) Format to be followed for dissertation

The format /certificate for dissertation to be followed by the student are given below

- > Title page
- > Certificate
- Acknowledgment
- Content as follows:

Chapter	Title	Page No
No		
1	Introduction	
2	Review of Literature	
3	Materials and Methods	
4	Results	
5	Discussion	
6	Summary	
7	References	

d) Format of the title page

Title of Dissertation

Dissertation submitted in partial fulfillment of the requirement for the degree of Master of Science in Mathematics to the Alagappa University, Karaikudi -630003.

By

(Student Name) (Register Number) University Logo Department of Mathematics Alagappa University

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle and Graded as Category-I University by MHRD-UGC, 2019: QS ASIA Rank-216, QS BRICS Rank-104, QS India Rank-20) Karaikudi - 630003 (Year) Format of certificate Certificate

This is to certify that the dissertation entitled ________ submitted in partial fulfillment for the requirement of the Degree of Master of Science in Mathematics to the Alagappa University, Karaikudi is a bonafide record of research work done by Mr./Mrs______ under my supervision and guidance and that no part of the dissertation has been submitted for the award of degree, diploma, fellowship or other similar titles or prizes and that the work has not been published in part or in full in any scientific journal or magazines.

e) Dissertation evaluation

Dissertation Work		:	50 Marks
Internal Assessment		:	25 Marks
Viva –voce		:	25 Marks
, in the second se	Fotal	:	100 Marks

9. Village Extension Programme (VEP)

The Sivaganga and Ramnad districts are very backward districts where a majority of people lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three days.

- 1. Environmental awareness
- 2. Hygiene and Health

A minimum of two faculty members can accompany the students and guide them.

10. Important Instructions

Attendance: Attendance and participation are vital to the student's success in this course. Students are expected to attend class every day.

Punctuality: Punctuality is an essential element in achieving success. Therefore, anyone arriving after daily roll-call (about 5 minutes after the class begins) will be marked absent. A valid excuse for being absent from class shall be a medical or a personal emergency acceptable at the discretion of the Dean/Chairman/Head of the Dept.

Class Participation: Class participation and interaction helps to form a complete educational experience. However, class participation and interaction is to be relevant to course content and context. Deviant behavior may lead to dismissal or suspension. **Submission of Assignments:** When submitting any assignments, **student name, student register number, course number and date of submission** should be clearly written on every page and all pages should be stapled together. The timely submission of assignments is an essence of personal discipline and will contribute towards forming a person's professional responsibility.

Preparedness: Students are expected to have read and be able to discuss the assigned chapter before attending the lecture. In addition, students should be prepared to discuss homework problems.

Academic Dishonesty: Academic work produced using dishonest methods has no value. Academic dishonesty also includes copying - verbatim or otherwise, and plagiarism i.e., the use of an author's ideas, statements, or approaches without crediting the source. A clear indication of academic dishonesty will result in a grade of "F" being assigned to that particular piece of work.

Subject to change clause: This syllabus, the course schedule and reading assignments are subject to change at the discretion of the Professor to accommodate instructional and/or student needs.

Candidates who passed all the examinations prescribed for the course in the first instance and within two academic years from the year of admission to the course are alone eligible for university ranking.

A candidate is deemed to have secured the first rank provided if he/she should have passed all the papers in the first attempt itself and should have secured the highest Cumulative grade point average (CGPA).

Each student should have taken credits as a core course, credits as a major elective; credits as nonmajor elective, credits as dissertation work, in addition, MOOCs courses as extra credits, thus totalingat least 90 + extra credits required to complete M.Sc. Mathematics degree course. Each paper carries 4/3/2 credits with 50% marks in the university examination and 50% marks in CIA.

Raw score	Letter Grade	Description	Grade point			
91 and above	S	First Class-Exemplary	9.01-10			
76-90	D	First Class-Distinction	7.51-9.00			
61-75	А	First Class	6.01-7.50			
56-60	В	Second Class	5.51-6.00			
50-55	С	Second Class	5.00-5.50			
Below 50	RA	Re-appear	-			
1	I - inadequate attendance; W-withdrawal from the course					

Semes Course/ Title Course No. Teachin Marks Total									
Semes	Course/ Title	Course Code	No. Credit	Teachin	Mar	Total			
		Code	Credit	g Hours	Ι	E			
			S	per week					
	Groups & Rings	511101	5	<u>6</u>	25	75	100		
	Real Analysis - I	511101 511102	5	6	25	75	100		
	Differential Equations	511102	5	6	25	75	100		
Ι	Analytic Number Theory	511105	5	6	25	75	100		
-	Elective Course – I		5	6	25	75	100		
	Library		5	1					
	Total		25	31			500		
	Linear Algebra	511201	5	6	25	75	100		
	Real Analysis – II	511201	5	6	25	75	100		
	Complex Analysis	511202	5	6	25	75	100		
	Elective Course – II		5	6	25	75	100		
	Non Major Electives Course – I		2	3	25	75	100		
II	*Self Learning Courses	MOOC's	Extra						
	Sen Leaning Courses	1100003	Credit						
	Library, Yoga and Career Guidar	nce	cicuit	3					
	Total	22+	30			500			
			Extra				000		
			Credit						
	Mechanics	511301	5	6	25	75	100		
	Topology	511302	5	6	25	75	100		
	Optimization Techniques	511303	5	6	25	75	100		
	Elective Course – III		5	6	25	75	100		
	Non Major Electives Course –		2	3	25	75	100		
III	П								
	*Self Learning Course	MOOC's	Extra						
			Credit						
	Library, Yoga and Career Guidar	nce		3					
	Total	22	+	30			500		
		Ext	ra						
		Cre							
	Functional Analysis	511401	5	6	25	75	100		
	Probability and Statistics	511402	5	6	25	75	100		
	Graph Theory	511403	5	6	25	75	100		
IV	Project Work	511999	6	12	25	75	100		
	Total	21	1	30			400		
	•	90+					1900		
	Grand Total	Extra							
		Credits							

M. Sc., Mathematics

	Major Elective – Courses offered to the other Department to other Departments									
S.	Paper	Semester	Title of the paper	Credits	Hours/		Marks	:		
No	Code		Week							
		•				Ι	Ε	Т		
1	511501	II	Differential Geometry	5	6	25	75	100		
2	511502	II	Numerical Analysis	5	6	25	75	100		
3	511503	III	Multivariate Calculus	5	6	25	75	100		
4	511504	III	Stochastic Processes	5	6	25	75	100		
5	511505	Ι	Combinatorics	5	6	25	75	100		
6	511506	III	Algebraic Number theory	5	6	25	75	100		
7	511507	III	Theory of Operators	5	6	25	75	100		
8	511508	Ι	Theory of Automata and Formal	5	6	25	75	100		
			Languages							
9	511509	Ι	Algorithmic Graph Theory	5	6	25	75	100		
10	511510	III	Coding Theory	5	6	25	75	100		
11	511511	Ι	Fluid Dynamics	5	6	25	75	100		
12	511512	Ι	Object oriented programming and C++	5	6	25	75	100		
13	511513	Ι	Skills in Latex	5	6	25	75	100		
14	511514	II	Measure and Integration	5	6	25	75	100		
15	511515	III	Calculus of Variations & Integral	5	6	25	75	100		
			Equations							
16	511516	II	MATLAB 5 6		6	25	75	100		
17	511517	II	Financial Mathematics 5		6	25	75	100		
18	511704	II	Effective Communication and Soft Skills	5	6	25	75	100		

Major Elective – Courses offered to the other Department to other Departments

Non-Major Elective –Courses offered to the other Department to other Departments

S. No	Paper Code	Semester	Title of the paper	Credits	Hours/ Week]	Marks	
						Ι	Ε	Т
1		III	Image Processing & Pattern Recognition	2	3	25	75	100
2		Ι	Discrete Mathematics	2	3	25	75	100
3		III	Methods of Mathematical Physics	2	3	25	75	100
4		III	Classical Mechanics	2	3	25	75	100
5		III	Resource Management Techniques	2	3	25	75	100
6		Ι	Descriptive Statistics	2	3	25	75	100
7		III	Biostatistics	2	3	25	75	100

Courses:

Ι	Semester	=	25 Credits	(Core: 20; Major Elective: 5)
II	Semester	=	22 Credits	(Core: 15; Major Elective: 5; Non-Major Elective: 2)
III	Semester	=	22 Credits	(Core: 15; Major Elective: 5; Non-Major Elective: 2)
IV	Semester	=	21 Credits	(Core: 15; Dissertation Work: 6)
Total credits		=	90+ Extra	(Core: 65; Major Elective: 15; Non-Major Elective: 4;
			credits	Dissertation Work: 6 + MOOCs extra credits)

	Semester – I							
Course Code:	511101	Groups and Rings	Credits: 5	Hours: 6				
Objectives	> In	troduce and study the basic properties of	f Groups, No	ormal sub groups and				
	-	lotient groups.						
		erive the notion of Homomorphism, Autom	orphism on g	roups and Permutation				
		oups.						
		troduce the above mentioned concepts in Sy	low's Theorem	ns, Direct products and				
		nite Abelian groups.		d i de al a				
TI:4 T		udy the basic concepts of rings and some typ						
Unit – I		on of a group – Some examples of groups – A counting principle – Normal subgroup						
Unit – II		orphisms – Automorphisms – Cayley's 1		Permutation groups –				
Omt – H		counting principle.	incorenii -	remutation groups –				
Unit – III		theorem – Direct products – Finite abelian g	proups.					
Unit – IV		on and Examples of Rings – Some Special		ings - Homomorphisms				
		and Quotient Rings – More Ideals and Quoti		0 ¹				
Unit – V		eld of Quotients of an Integral Domain		Rings – A particular				
		an Ring – Polynomial Rings - Polynomials	over the Ratio	onal Field – Polynomial				
		ver Commutative Rings.						
Reference & T								
Artin, M. (199)	1). Algebi	a. Prentice Hall of India, New Delhi.						
Bhattacharaya,	P.B., Jair	n S.K., Nagpaul. S.R. (1995). Basic Abstract A	<i>lgebra</i> . Camb	ridge University Press.				
Herstein, I. N.	(2017). <i>T</i>	opics in Algebra (2nd ed.). John Wiley & Son	s.					
John Fraleigh,	B. (1982)	A first course in Abstract Algebra. Addison	Wesley, MA.					
Outcomes	After the	e successful completion of this course, studer	nts will be able	e to:				
		Understand the concepts of groups, normal s	•					
		Explain the concepts of homomorphism	n, automorpl	nism on groups and				
		permutation groups.	1					
		Analyze basic concepts about rings, ideals an	·	•				
		Demonstrate the examples of Euclidea Commutative rings.	an rings, po	olynomial rings over				

Name of the Course Teacher Dr. J. Vimala Assistant Professor Department of Mathematics

		Semester – I			
Course Code:	511102	Real Analysis– I	Credits: 5	Hours: 6	
Objectives	 Deal primarily with sequences and series of complex numbers. The basic facts about convergence. Discuss vector valued functions (i.e. functions with values in R^K) and functions with values in an arbitrary metric space. Confine our attention to real functions defined on intervals or segments. The genuine differences appear when we pass from real functions to vector valued ones. 				
Unit - I	spaces -	opology: Finite, Countable and uncoun Perfect sets – Connected sets.		x x	
Unit - II	sequence nonnega	cal sequences and series: Convergent es – Upper and lower limits – Some s tive terms.	pecial sequences –	Series – Series of	
Unit - III	Power	cal sequences and series (Conti): The series – Summation by parts – Ab cation of series – Rearrangements.			
Unit - IV	Continu Continui	ity – Limits of functions – Continuous fut ty and connectedness – Discontinuities ts at infinity.			
Unit - V	derivativ	tiation – Derivative of a real function – res – L'Hospital rule – Derivatives o tiation of vector valued functions.		-	
Reference & T Apostol, T.M.		s: athematical Analysis (2 nd ed.).New Delhi:	Narosa Publ. House	e.	
Donald Sherbe	rt, R., Rol	pert Bartle, G. (2014). Introduction to Red	al Analysis (4 th ed.).	Wiley.	
		10). Introduction to Analysis (5 th ed.). Am			
Walter Rudin.	(2016). <i>P</i>	rinciples of Mathematical Analysis (3 rd ed	.). New York : McG	iraw-Hill.	
Outcomes		e successful completion of this course, stu Define and recognize the series of real ability of working independently and with Define and recognize Bolzano- Weirstras in a correct mathematical way. Demonstrate an understanding of limits series, differentiation and integration.	numbers and conv groups. s theorem. Ability t	to apply the theorem	

Name of the Course Teacher Dr. S. Amutha Assistant Professor Ramanujan Centre for Higher Mathematics

		Semester – I			
Course Code: 511103		Differential Equations	Credits: 5	Hours: 6	
Objectives	s n > U	ormulate ordinary differential equations (O olutions, either obtained exactly or appro- nethods. Inderstand the concept of a solution to an in f its existence and uniqueness under specific	oximately by itial value prob	analytic or numerical	
Unit – I	Linear equations with constant coefficients: Linear dependence and independence - A formula for the Wronskian – The non-homogeneous equation of order two - Homogeneous equation of order n-initial value problems for n th order equations- Equations with real constants - Non-homogeneous equation of order n.				
Unit – II	equatio	equations with variable coefficients: Red n – The non homogeneous equation - Ho ents- Legendre equation.	omogeneous e	quations with analytic	
Unit – III	of first Linear Charpit	differential equations of the first order: F order partial differential equations – Cauchy equations of the first order – Integral surfa 's method – Special types of first order ec- ons – Jacobi's method.	's problem for ces passing th	rough a given curve –	
Unit – IV	– Linea	differential equations of the second order ar partial differential equations with constant tents – Separation of variables.			
Unit – V	Laplac	e's equation: Elementary solutions of La ns – The Wave equation: Elementary solu			
Reference &T Earl Coddingto	extbook		l Equations. Pi	entice Hall of India.	
-		ements of Partial Differential Equations. Mc	-		
James Robinso	n, B.(20	04). An Introduction to Ordinary Differential	l Equations. Ca	ambridge University	
Press.			•		
Raj, D., Choud	hury, D.	P., Freedman, H.I. (2004). A Course in Ordina	ary Differentia	el Equations, Chennai:	
Narosa Pu	ıbl. Hous	se.			
Outcomes		e successful completion of this course, studen Understand the difficulty of solving problems numerical approximations for their resolution Use computational tools to solve problems an equations and partial differential equations.	analytically a	nd need to use	

Name of the Course Teacher Dr. B. Yasodara Department of Mathematics

		Semester – I		
Course Code:	511104	Analytic Number Theory	Credits: 5	Hours: 6
Objectives	➢ Gain an understanding and appreciation of Analytic Number Theory and some of			
		its important applications.		
		Focus on the properties of prime number	s and to und	erstand Prime number
		Theorem.		. 1 1
	,	Understand the partitions of numbers and l with Combinatorics.	•	·
Unit - I	The fu multipli	ndamental theorem of Arithmetic – A cation.	Arithmetic Fu	nction and Dirichlet
Unit - II		es of Arithmetic Functions.		
Unit - III		ementary theorems on the distributions of pr	ime numbers.	
Unit - IV	Congrue			
Unit - V		ic residues and the quadratic reciprocity law	•	
Reference &T				
	-	mentary Number Theory (7th ed.).New Delhi		ok Stall.
Davenport, H.	(2000). <i>M</i>	<i>Uultiplicative Number Theory</i> (3rd ed.). Spring	ger.	
Ireland, K., Ro	sen, M. (1972).A Classical Introduction to Modern N	umber Theory.	New York: Springer
Verlag.				
Ivan Niven, Zu	ckerman	, H.S.(1989). An Introduction to the Theory of	f Numbers(5 th	ed.). New Delhi: Wiley
Eastern L	td			
Montgomery, H	H.L. Vau	ghan, R.C.,(2012).Multiplicative Number Th	eory. I. Classic	cal Theory. Cambridge
Universit	y Press.			
Tom Apostol, I	Tom Apostol, M. (2010). Introduction to Analytic Number Theory. New Delhi: Narosa.			
Outcomes	 H t U U U 	e successful completion of this course, stude Prove results similar to the ones presented echniques, results and concepts of the course Understand the interdisciplinary nature with Understand theoretical physics and Combina heory.	l in the cours to concrete exother mathema	e and apply the basic camples and exercises. tical branches.

Name of the Course Teacher Dr. M. S. Anitha Department of Mathematics

		Semester – II		
Course Code:		Linear Algebra	Credits: 5	Hours: 6
511201				
Objectives		ntroduce the basic concepts of vector spaces		ses and dimension,
		oordinates and Summary of Row-Equivalence		
		tudy linear transformation on n-dimensional	-	
T T 1 / T		stablish a few of the basic properties of algel		
Unit - I		spaces - Subspaces - Bases and dimension	on - Coordinate	es - Summary of row-
T T •4 T T		ence - Computations concerning subspaces		
Unit - II		transformations - The algebra of linear		
		entation of transformations by matrices - Langue of a linear transformation.	mear runctiona	lis - The double dual -
Unit - III		mials: Algebras - The algebra of poly	nomials - La	grange interpolation -
01111 - 111	•	mial ideals - The prime factorization of a pol		grange interpolation
Unit - IV		ninants: Commutative rings - Determinar		Permutations and the
		ness of determinants - Additional properties		
	-	Introduction - Characteristic values - A		-
	subspac	ces.		
Unit - V		aneous triangulation: Simultaneous diagno		
		iant direct sums - The primary decompositi		
		Cyclic subspaces and annihilators - Cyclic d	lecompositions	and the rational form -
		rdan Form.		
Reference & T				
Artin, M. (199)	1).Algeb	ra. New Delhi: Prentice Hall of India.		
David Lay, C.(David Lay, C.(2003). Linear Algebra and its Applications (3rd ed.). Pearson Education, Inc			
Hoffman, K., Kunze, R. (2015). <i>Linear Algebra</i> (2 nd ed.). Pearson Education Inc., Prentice Hall Sons.				
Lang, S.(1971)	Lang, S.(1971). Algebra (3rd ed.). Addison Wesley, Reading, MA.			
Strang, G. (200	9).Intro	duction to Linear Algebra (4th ed.).Wellesley	Cambridge Pr	ess.
Outcomes	Studen	ts who successfully complete this course sho	uld be able to:	

Outcomes	Students who successfully complete this course should be able to:
	> Assign a dimension to certain vector spaces and illustrate examples of vector
	spaces and subspaces.
	> Access properties implied by linear transformations, linear functional, Double
	dual.
	\succ Classify and determine the polynomial ideals and prime factorization of a
	polynomial.

Name of the Course Teacher Dr. J. Vimala Assistant Professor Department of Mathematics

		Semester – II		
Course Code: 511202		Real Analysis – II	Credits: 5	Hours: 6
Objectives		Deals with the definition of the Riemann in	tegral which	depends very explicitly
		on the order structure of the real line.		
		Discuss an integration of real valued function		
		Deals with many theorems and proofs exten		
		functions and even to mappings into general		
Unit - I		mann – Stieltjes integral: Definition and ex		
		ral – Integration and differentiation – Integr	ration of vect	or – valued functions –
		ble curves.		
Unit - II		es and series of functions: Discussion on n		
		m convergence and continuity – Uniform con		
Unit - III	-	es and series of functions (Conti): Unifor	•	ce and differentiation –
		tinuous families of functions – Weierstrass th		
Unit - IV		ecial functions: Power series – The expone	ntial and loga	rithmic functions – The
		netric functions.	<u> </u>	T I 0 1
Unit - V		braic completeness of the complex field - Fo	ourier series -	The gamma function.
Reference & T			D 11 H	
		<i>uthematical Analysis</i> (2 nd ed.).New Delhi: Na		use.
Ganapathy Iye	er, V.(1970	0).Mathematical Analysis. New Delhi: Tata M	AcGraw Hill.	
Royden, H.L.	(1993). <i>Re</i>	al Analysis (4th ed.).New York: Macmillan P	ubl. Co. Inc.	
Russel Gorder	n, A.(2011). Real Analysis. A First Course, Pearson.		
Walter Rudin,	(2016). <i>P</i>	rinciples of Mathematical Analysis (3rd ed.).	New Yor: Mc	Graw-Hill.
Outcomes	After the	e successful completion of this course, the stu	dent will be a	ble to
		efine and recognize the series of real numbe	rs and conver	gence shown the ability
		f working independently and with groups.		
		efine and recognize Bolzano- Weirstrass the	eorem. Abilit	ty to apply the theorem
	ir	a correct mathematical way.		

Name of the Course Teacher Dr. B. Sundaravadivoo Assistant Professor Department of Mathematics

		Semester – II				
Course Co 511203		Complex Analysis	Credits: 5	Hours: 6		
Objectives	> T c S c	then introduced.				
	c	The skill of contour integration to evaluate control alculus.	•			
Unit - I	-	ic functions – Polynomials – Rational func n – Bi-linear transformations.	tions – Powe	r series – Abel's limit		
Unit - II	Compl rectang	ex integration - line integrals - Fundament le- Cauchy's theorem for disk - Cauchy's inte to a closed curve, Higher derivatives.				
Unit - III	zeroes theorem		nciple, the ger	neral form of Cauchy's		
Unit - IV		Iculus of residues: The residue theorem – The integrals.	e argument p	rinciple – Evaluation of		
Unit - V	Weiers	trass theorem, Taylor's series, Laurent series	5.			
Reference & T	extbook	s:				
Conway, J.B.(1980).Fu	nctions of one Complex variable. New Delhi:	Narosa Publ.	House.		
. .	-	x-Analysis. Addison Wesley Mass.				
Lars Ahlfors,	V. (2016)	. <i>Complex Analysis</i> (3 rd ed.)., McGraw Hill.				
McMullen, C.	(1893).6	Complex Analysis. USA: Harvard University.				
Ponnusamy, S	. (2004).	Foundations of Complex Analysis. New Delhi	: Narosa Publ.	House.		
Stein and Shak	karchi, (2	003). Complex Analysis. Princeton University	Press.			
Outcomes	 After the successful completion of this course, the student will be able to: Apply the fundamental concepts of complex numbers and variables. Solve the problem using Cauchy's integral formula and Cauchy's residue theorem, Residue theorem. Formulate and solve differential equation problem in the field of industrial organization engineering. 					

Name of the Course Teacher Dr. R. Jeyabalan Assistant Professor Department of Mathematics

		Semester – III			
Course Co		Mechanics	Credits: 5	Hours: 6	
511301					
Objectives	 The understand the fundamental concepts in mechanics such as force, energy, momentum etc. more rigorously as needed for further studies in physics, engineering and technology. The student's physical intuition and thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems. An advanced mathematical techniques and methods of use to physicists in solving problems. Develop some capabilities for numerical/computational methods, in order to obtain solutions to problems too difficult or impossible to solve analytically. 				
Unit - I	Mecha momen	nical system – Generalized coordinates – Con tum	straints – Vir	tual work – Energy and	
Unit - II	Derivat	ion of Lagrange's equations – Examples – Int	egrals of moti	on.	
Unit - III		on's principle – Hamilton's equation – Other	-		
Unit - IV		on principle function – Hamilton-Jacobi equ			
Unit - V		ntial forms and generating functions – Spe	cial transform	nations – Lagrange and	
		h brackets.			
Reference &T Chandra, S.(20		s: <i>sical Mechanics: A Textbook</i> . UK: Alpha Scie	ence Internatio	onal.	
Goldstein, H. (2001). <i>Cl</i>	assical Mechanics. New Delhi: Narosa Publis	hing House.		
Greenwood, D	. T. (198	5). Classical Dynamics. New Delhi: Prentice I	Hall of India.		
		<i>Classical Mechanics</i> (2 nd ed.).California: Univ		Books, Sausalito.	
-		(1991). Classical Mechanics. New Delhi: Tata	•		
Synge J.L.,Gri	ffth, B.A	. (1970). Principles of Mechanics. New York:	McGraw Hill	Book Co	
Outcomes	\succ	 After the successful completion of this course, students will be able to: ➤ Have a deep understanding of Newton's laws. ➤ Solve the Newton equations for simple configurations using various methods. 			

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Semester – III			
Course Code: 511302		Topology	Credits: 5	Hours: 6	
Objectives	> Explain how to distinguish spaces by means of simple topological invariants,				
		mpactness, connectedness and the fundament	0 1		
		plain how to construct spaces by gluing and	to prove that	in certain cases that the	
		sult is homeomorphic to a standard space.			
X X X		onstruct simple examples of spaces with given	<u> </u>	T T1 1 4 4 1	
Unit - I		gical spaces – Bases for a topology – The or		1 1 01	
Unit - II		<u><i>X</i></u> – The subspace topology – Closed sets and oduct topology – The metric topology –			
Umt - 11		ed spaces – Connected subspaces of the real		(continued) -	
Unit - III		ct Spaces – Compact subspaces of the real 1		nt compactness– Local	
	compact			in computitions Local	
Unit - IV		intability axioms – The separation axioms	– Normal S	paces - The Urysohn's	
		– The Urysohn's Metrization theorem.			
Unit - V	The Tie	etze extension theorem - Imbedding of ma	anifolds - The	e Tychonoff theorem –	
		ne-Cech compactification.			
Reference &T					
0 0		ology. New Delhi: Prentice Hall of India.			
Hocking, J.G.,	Young, C	G.S.(1961). Topology. Addison-Wesley Publis	hing Compan	y, Inc, Reading Mass.	
Hu, S.T.(1965)	Elements	of General Topology. New York: Holden Da	iy, Inc.		
James Munkres	s, R. (201	8). Topology: A First Course (2 nd ed.). New I	Delhi: Prentic	e Hall of India.	
Simmons, G.F.	(1963).In	ntroduction to Topology and Modern Analysi	s. New York:	McGraw Hill Co.	
Stephen Willar	d.(1970).	General Topology. Addition Wesley, Publish	ing Company		
Outcomes	After the	e successful completion of this course, studer	nts will be abl	e to	
		Define and illustrate the concept of topologic	·		
		Define and illustrate the concept of product t			
		Prove a selection of theorems concerni		al spaces, continuous	
		functions, product topologies, and quotient to	opologies.		

Name of the Course Teacher Dr. R. Jeyabalan Assistant Professor Department of Mathematics

Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in			Semester – III			
 Make the learners aware of the importance of optimizations in real scenarios. Provide the concepts of various classical and modern methods for constrained and unconstrained problems in both single and multivariable. Unit - I Network models: Minimal spanning tree algorithm - Shortest route algorithms - Maximal flow problems - Critical path calculations - Tree and total floats. Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).<i>Introduction to Operation Research</i> (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).<i>Operations Research</i> (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9th ed.). Sultan Chand and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New York: Principles and Practice John Wiley and Sons. Solve various constrained and unconstrained problems in single variable as well as multivariables. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote res	Course Code:		Optimization Techniques			
 Provide the concepts of various classical and modern methods for constrained and unconstrained problems in both single and multivariable. Unit - I Network models: Minimal spanning tree algorithm - Shortest route algorithms - Maximal flow problems - Critical path calculations - Tree and total floats. Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn - Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). <i>Introduction to Operation Research</i> (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). <i>Operations Research</i> (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variables. Apply the methods of optimization in real life situations.	Objectives					
unconstrained problems in both single and multivariable. Unit - I Network models: Minimal spanning tree algorithm - Shortest route algorithms - Maximal flow problems - Critical path calculations - Tree and total floats. Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems.						
Unit - I Network models: Minimal spanning tree algorithm - Shortest route algorithms - Maximal flow problems - Critical path calculations - Tree and total floats. Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).Introduction to Operation Research (9 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Appl					ds for constrained and	
Maximal flow problems - Critical path calculations - Tree and total floats. Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn - Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Sol	TT •4 T		· · · · · · · · · · · · · · · · · · ·		4	
Unit - II Advanced linear programming: Simplex method using the restricted basis - Bounded variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization	Unit - I		1 0 0		6	
variables algorithm - Revised Simplex method. Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - IV Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in	Unit - II					
Unit - III Game theory: Optimal solution of two person zero Sum Games - Solution of mixed strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. Papely the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in	0mt - 11			a using the resu	leteu basis - Doulideu	
strategy games - Linear programming solution of games. Unit - IV Classical optimization theory: Jacobian method - Lagrangian method - The Newton Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming – Quadratic programming. Reference &Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Solve various constrained and unconstrained problems in single variable as well as multivariables.	Unit - III		<u> </u>	zero Sum Game	s - Solution of mixed	
Raphson method - Kuhn- Tucker conditions. Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in						
Unit - V Unconstrained algorithms - Non linear programming algorithms: Separable programming - Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in	Unit - IV	Classica	al optimization theory: Jacobian method	l - Lagrangian r	nethod - The Newton	
- Quadratic programming. Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4 th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research (9 th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in						
 Reference & Textbooks: Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989). Introduction to Operation Research (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	Unit - V			ng algorithms: S	eparable programming	
 Gillett, B.E. (1976). Operations research, A Computer Oriented Algorithmic Approach (TMH ed.). New Delhi. Hillier, F.S., Lieberman, G.J. (1989).<i>Introduction to Operation Research</i> (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).<i>Operations Research</i> (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 			<u> </u>			
 Delhi. Hillier, F.S., Lieberman, G.J. (1989).<i>Introduction to Operation Research</i> (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).<i>Operations Research</i> (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 						
 Hillier, F.S., Lieberman, G.J. (1989).<i>Introduction to Operation Research</i> (4th ed.). New York: Mc Graw Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994).<i>Operations Research</i> (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	-	976). Ope	erations research, A Computer Oriented Al	gorithmic Appro	ach (TMH ed.). New	
 Hill Book Company. Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 				a		
 Kanti Swarp, Gupta, P.K., Mohan, M. (1994). Operations Research (9th ed.). Sultan Chand and Sons. Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). Operations Research (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	Hillier, F.S., Li	ieberman,	G.J. (1989).Introduction to Operation Res	eearch (4 th ed.). N	New York: Mc Graw	
 Philips, D.T., Ravindra, A., Solbery, J. (1999). Operations Research. New York: Principles and Practice John Wiley and Sons. Taha, H.A. (2018). <i>Operations Research</i> (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	Hill Boo	k Compa	ny.			
John Wiley and Sons. Taha, H.A. (2018). Operations Research (9 th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in	Kanti Swarp, C	Gupta, P.K	K., Mohan, M. (1994). Operations Research	(9 th ed.). Sultan	Chand and Sons.	
 Taha, H.A. (2018). Operations Research (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	Philips, D.T., F	Ravindra,	A., Solbery, J. (1999). Operations Research	h. New York: Pri	inciples and Practice	
 Taha, H.A. (2018). Operations Research (9th ed.). New Delhi: Pearson Education. Outcomes After the successful completion of this course, students will be able to Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 	John Wil	ey and Sc	ons.		-	
 Outcomes After the successful completion of this course, students will be able to > Understand and apply the concept of optimality criteria for various types of optimization problems. > Solve various constrained and unconstrained problems in single variable as well as multivariables. > Apply the methods of optimization in real life situations. > Develop and promote research interest in applying optimization techniques in 		•		son Education.		
 Understand and apply the concept of optimality criteria for various types of optimization problems. Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 					to	
 Solve various constrained and unconstrained problems in single variable as well as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 			A .			
 as multivariables. Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 						
 Apply the methods of optimization in real life situations. Develop and promote research interest in applying optimization techniques in 				ned problems in	single variable as well	
Develop and promote research interest in applying optimization techniques in				1.6		
					nization toobniques in	
			various problems.	n apprying optir	inzation techniques in	

Name of the Course Teacher Dr. M. Mullai Assistant Professor Directorate of Distance Education

		Semester – IV		
Course Code:		Functional Analysis	Credits: 5	Hours: 6
511401				
Objectives		dy the spaces of functions.		
		oduce the basic concepts and theorems of f		
Unit - I		I space - Banach space – Properties of		
		spaces and subspaces - Compactness and		
		d linear operators – Linear functional – No		
Unit - II		roduct space – Hilbert space – Properties		
TT •4 TTT		Orthonormal sets and sequences – Total or		
Unit - III		theorem – Hilbert adjoint operator – Self-		
Unit - IV		• Banach theorem - Adjoint operator – F n boundedness theorem.	Reflexive spaces	- Category theorem -
Unit - V		and weak convergence – Convergence of	sequences of on	parators and functionals
Unit - v		mapping theorem -Closed graph theorem.	sequences of op	erators and functionals
Reference &T				
		G.(1987).First Course in Functional Analy	sis.New Delhi: H	Prentice Hall of India.
Kreyszig, E. (2	2019). Intr	roductory Functional Analysis with Applic	ations. John Wie	ly.
Rudin, W. (199	91). <i>Funct</i>	ional Analysis. New Delhi: Tata McGraw	Hill Publ. Co.	
Simmons, G.F.	. (1963).I	ntroduction to Topology and Modern Anal	ysis. New York:	McGraw Hill Inter.
Book Co.				
Somasundaran	n, D.(1994	4). Functional Analysis. Chennai: S. Viswar	nathan Pvt. Ltd.	
Outcomes	After the	e successful completion of this course, stud	lents will be able	e to:
	\succ	Describe the properties of normed linear	spaces and cons	truct examples of such
		spaces.		
		Extend basic notions from calculus to met		
		State and prove theorems about finite dime	•	
	\succ	State and prove the Cauchy-Schwartz inec	quality and apply	y it to the derivation of
		other inequalities.		
	\succ	Describe the properties of normed linear	spaces and cons	truct examples of such
		spaces.		

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Semester – IV		
Course Code:		Probability and Statistics	Credits: 5	Hours: 6
511402				
Objectives		ly the key concepts of probability, includ	U	
		ables, probability distributions, conditi	onal probabi	lity , independence,
	-	ectations, and moments.		
		bly the basic rules and theorems in probabili	ty including B	ayes's theorem and the
T T •4 T		tral Limit Theorem (CLT).	1 1 1	D 1 11
Unit - I		ility set function - Conditional probability a rete-type and continuous type- Distribut		
		tion of a random variable - Moment		
	-		generating ful	inction - Chebychev s
Unit - II	inequali	ty. ndom variables - Joint density - Margina	al probability	density Conditional
Umt - 11		ion - Expectation and variance - Independer		
		dence and pair-wise independence.		uoni variabies - iviutuai
Unit - III		e distributions - Bernoulli, binomial a	nd related d	istributions - Poisson
		ion - Continuous distributions - Experimentation		
		e normal distributions.	an, gunnina and	en square normar and
Unit - IV		, Statistics and parameter concepts - Trans	formation of v	ariables of discrete and
		ous types- t and F distributions – Change of		
		s- Distributions of order statistics and Momen		
Unit - V		itions of sample mean and sample var		
		variables - Limiting distributions - Converge		
		ng M.G.F- Central limit theorem - Important	results on limit	iting distributions.
Reference & T				
Chow Y.S. Te	icher, H.(1988).Probability Theory. Berlin: Springer V	erlag.	
Chung, K.L. (1	1974).A ca	purse in Probability. New York: Academic P	ress.	
Durrett, R.(199	96). Proba	bility: Theory and Examples (2 nd ed.). New Y	York: Duxbury	Press.
Hogg, Craig, N	Ackean, J.	(2018). Introduction to Mathematical Stat	<i>istics</i> (7 th ed.).	Pearson Education.
Outcomes	After the	e successful completion of this course, stude		
	\succ	Derive the probability density function of the		
		and use these techniques to generate data fr		
	\triangleleft	Calculate probabilities, and derive the marg	inal and condi	tional distributions of
	×	bivariate random variables.		
		Know the distributions of sample mean, van	rance and cent	tral limit theorem.

Name of the Course Teacher Dr. N. Anbazhagan Professor& Head Department of Mathematics

		Semester – IV		
Course Co		Graph Theory	Credits: 5	Hours: 6
511403				
Objectives		troduce the fundamental concepts in graph t	heory, in a se	nse of some its modern
	-	oplications.		
		se these methods in subsequent courses in the	U	
		omputability theory, software engineering, an		stems.
		over a variety of different problems in graph rove theorems which will be stated formally u		achniquas
Unit - I		s – Subgraphs – Graph isomorphisms – In	<u> </u>	
Umt - I	-	degrees – Paths – Cycles – Trees- Cut edge –		
Unit - II		tivity – Blocks – Euler tours – Hamiltonian c		Cayley STorniala.
Unit - III		ngs - Matchings and coverings in Bipar	•	Perfect matchings _
Omt - III		ident sets – Ramsey's theorem – Taurn's theo	• •	refreet materings
Unit - IV		hromatic number – Vizing's theorem – Chr		er – Brook's theorem –
		heorem – Chromatic polynomials.		
Unit - V		nd planar graphs – Dual graphs – Euler's	formula – The	e five colour theorem –
		miltonian planar graphs.		
Reference & T	extbook	5:		
Bela Bollobas.	(1998). <i>M</i>	odern Graph Theory. Springer, Science & Bu	usiness Media	
Bondy J. A. M	urthy U.S	S.R. (2013). Graph Theory with Applications.	Elsevier Scie	nce Publishing Co.,
Inc	•			C
Dougles West,	B.(2000)	.Introduction to Graph Theory (2 nd ed.). Pear	son Publicatio	on.
Foulds, L. R.(1	1933). <i>Gra</i>	uph Theory Application. Chennai: Narosa Pub	ol. House.	
Harary, F. (196	59). <i>Grap</i> i	h Theory. Addison Wesely Pub. Co. The Mas	s.	
Jean Calude Fo	ournier.(2	009). Graph Theory and Applications: With	exercises and	Problems. Wiley-ISTE.
Jonathan Gross	s, L., Jay	Yellen, (1998). Graph Theory and its Applica	tions (2 nd ed.)	. CRC Press.
Outcomes		e successful completion of this course, studer		
	\succ	Understand the basic concepts of graphs, d	irected graphs	s, and weighted graphs
		and able to present a graph by matrices.		
		Understand the properties of trees and able	to find a mini	mal spanning tree for a
	~	given weighted graph.		
	\succ	Understand Eulerian and Hamiltonian graphs	5.	

Name of the Course Teacher Dr. S. Amutha Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course		
Course Cod	e: 511	Differential Geometry	Credits: 5	Hours: 6
501				
Objectives		ntroduce the concepts -What is a curve? A	arc-Length, C	urvature, Plane curves,
	·	e Curves, Frenet –Serret Equations.	1 6	
		make the knowledge about Surfaces, Sm	nooth surfaces	s, Tangents, Normals,
	-	dric Surfaces.	on Comforces	Isometries of Surfaces
		ntroduce the concepts of Lengths of Curves formal Mappings of Surfaces.	on Surfaces,	isometries of Surfaces,
Unit - I		ctory remark about space curves – Definit	tions Arc la	ath Tangent normal
Unit - I		rmal – Curvature and torsion of a curve give		
Unit - II		between curves and surfaces – Tangen		
		equations – Fundamental existence theorem		
Unit - III		on of a surface – Curves on a surface –	A	
	Metric –	Direction coefficients.		
Unit - IV	Families	of curves - Isometric correspondence -	Intrinsic pro	operties - Geodesics -
		al Geodesic equations – Normal property of		
Unit - V		e theorem– Geodesic parallels – Geodesic	curvature – G	auss – Bonnet theorem
		an curvature.		
Reference &T			1 \ T 1 337'	1.0
		ring Optimization: Theory and Practice (4 th		
).Differential Geometry. Chennai: Alpha Sci		
Struik, D.T.(19	950).Lectu	res on Classical Differential Geometry. Add	ison Wesely, I	Mass.
Thorpe, J.A.(19	979). <i>Elem</i>	entary Topics in Differential Geometry. New	v York: Spring	ger – Verlag.
Willmore T.G.	(2018). <i>A</i>	n Introduction to Differential Geometry. Tw	enty Ninth, O	xford University press.
Outcomes		successful completion of this course, studen		
	\succ	Understand the curvature and torsion of a	•	how to compute them,
	×	and how they suffice to determine the shape		
	\triangleright	Understand the definition of a smooth surf	tace, and the	means by which many
	\triangleright	examples may be constructed.	urricture occo	pieted to a surface and
	-	Understand the various different types of c how to compute them.	uivature assoc	Liaicu io a surface, and
		now to compute mem.		

Name of the Course Teacher Dr. M. Mullai Assistant Professor Directorate of Distance Education

		Elective Course			
Course Code:		Numerical Analysis	Credits: 5	Hours: 6	
511502					
Objectives		erive appropriate numerical methods to	solve algebra	ic and transcendental	
	equations.				
		evelop appropriate numerical methods to app			
T T •4 T		evelop appropriate numerical methods to solv			
Unit – I	•	of equations and unconstrained optim – Newton's method – Fixed point iteration as	L		
Unit - II		imation: Uniform approximation by polyr			
		nials – Least square approximation by polyno		6 6	
Unit - III	Differen	ntiation and integration: Numerical diffe	erentiation –		
		asic rules – Numerical integration: Gauss	sian rules – 1	Numerical integration:	
		ite rules.			
Unit - IV		ution of differential equations: Mathemati			
		ns – Numerical integration by Taylor series -	- Error estima	tes and convergence of	
Unit - V		method – Runge – Kutta methods. step formulas – Predictor – Corrector metho	da Daundan	u voluoDrohlamasEinita	
Unit - v		ce methods – Shooting methods.	ous – Boundar	y valuerroblems:rime	
Reference & T					
		r, (1981).Elementary Numerical Analysis: An	n Algorithmic .	Approach (3 rd	
ed.).McC	Braw - Hil	1.			
Gerald, C.F., V	Wheathy, I	P.O. (1998).Applied Numerical Analysis. (5 th	ed.). Addison	Wesley.	
Kandasamy, P	., Thilaga	vathy, K., Gunavathy, K.(2003).Numerical M	Iethods. S. Ch	and & Company.	
Sastry, S.S.(19	95). Intro	ductory methods of Numerical Analysis. Pre	ntice of India.		
Vedamurthy, V	V.N.,Iyeng	gar, Ch. S.N.(1998).Numerical Methods. Vik	as Publishing	House Pvt Ltd.	
Outcomes	The stuc	lents will become proficient in:			
		Understanding the theoretical and practical	al aspects of	the use of numerical	
		methods.			
		Implementing numerical methods for a varie	•		
		Establishing the limitations, advantages, methods.	and disadva	antages of numerical	
		methods. Demonstrate understanding of common nu	marical math	ade and how they are	
		used to obtain approximate solutions.		ous and now uncy ale	
	1	used to obtain approximate solutions.			

Name of the Course Teacher Dr. S. Amutha Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course		
Course Co		Multivariate Calculus	Credits: 5	Hours: 6
511503				
Objectives		mine functions of several variables, define	and compute	limits of functions at
	1	nts and determine continuity.		4 1 ("
		rectangular, cylindrical and spherical coordi surfaces in Cartesian and parametric forms.	nates systems	to define space curves
		ine and compute the curl and divergence	of vector fiel	ds and apply Green's
		orem, Stokes's Theorem and the Divergence		
		ace integrals and flux integrals.		e varaate mite mitegrand,
Unit - I		ntiation – Partial derivatives – Directional	derivatives –	Contractionprinciple –
	Inverse	function theorem.		
Unit - II		t function theorem - Rank theorem – Deterr	ninants – Jaco	bians – Derivatives of
		rder – Differentiation of integrals.		
Unit - III		ve mappings – Partitions of unity – Change		
Unit - IV		ary properties – Products of basic k-forms – I	A	
Unit - I v		ntiation – Change of variables– Affine simp and chains – Positively oriented boundaries.	blex – Affine	chain – Differentiable
Unit - V		theorem – Closed forms and Exact forms –	Vector fields	– Volume elements –
chit ,		theorem – Arc elements – Stokes formula.		
Reference &T	'extbooks	:		
Edwards, C.H.	(1973).Ac	lvanced Calculus of Several Variables. New `	York: Academ	ic Press Inc.
Francis Calrke	, (2013). I	Functional Analysis. Calculus of Variations a	nd Optimal Co	ontrol. Springer.
Loomis, L. H.,	Sternberg	, S.(1968). Advanced Calculus, Addison-West	ley Publishing	Company, Inc.
Michael Spival	k, (1995).	Calculus on Manifolds. Addison-Wesley Pub	lication Comp	any.
Rudin, W. (201	16). Princ	iples of Mathematical Analysis (3rd ed.). McC	Graw Hill.	•
		variable Calculus. USA: Brooks/Cole.		
Outcomes	After the	e successful completion of this course, studen	ts will be able	to
		Draw graphically and analytically synthesize		
		valued functions and their derivatives.		
		Use double triple and line integrals in appli-	cations, inclue	ling Green's Theorem,
		Stokes' Theorem and Divergence Theorem.		1.1 1 1 1
	\succ	Synthesize the key concepts of differential, in	ntegral and mu	lltivariate calculus.

Name of the Course Teacher Dr. B. Sundaravadivoo Assistant Professor Department of Mathematics

		Elective Course		
Course C		Stochastic Processes	Credits: 5	Hours: 6
511504				
Objectives		provide the fundamentals and advanced	1 .	
		lom process to support graduate coursework	and research	in electrical, electronic
		computer engineering.	- 4	·
		required mathematical foundations will be applications of the probability theory and		
		plems will be emphasized.		beesses to engineering
Unit - I		on of stochastic processes – Markov chains	: definition, o	rder of a Markov chain
		er transition probabilities – Classification of		
	number	of states and reducible chains.		
Unit - II		process with discretestate space: Poisson	.	
		es of Poisson process, Generalizations of H	Poisson proce	sses – Birth and death
		es – Continuous time Markov chains.	x . 1 .!	
Unit - III		v processes with continuous state space:		
		process and differential equations for it, Kolr ion for Weiner process – Ornstein – Uhlenbe	•	ons – first passage time
Unit - IV		ing processes: Introduction – properties of		functions of Branching
		– Probability of extinction – Distribution		
		nal limit laws due to Kolmogrov and due		
		process – Bellman Hari's process.		
Unit - V		tic processes in Queueing Systems: Con		
		t behaviour of M/M/1 model – Birth and	-	
		model and related distributions – $M/M/ \infty/$ -	M/M/S/S - I	oss system – M/M/S/M
Reference & T		Iarkovian queues – P-K formula.		
		uction to Stochastic Processes. New Jersey: F	Prentice Hall	Inc
	·	w Sage, P.(1973). An Introduction to Probabil	-	
			illy and Sloch	usiic 170cesses.ivew
•	rentice Ha	-	1	. 1
-		<i>ustic Processes</i> (4 th ed.). New age international		
ę		13). Stochastic Processes: Theory for Applica		•
Outcomes	After su	ccessful completion of this course, students y		
		Acquire more detailed knowledge about M space, including Markov chains, Poisson pro-	-	

Name of the Course Teacher Dr. N. Anbazhagan Professor & Head Department of Mathematics

		Elective Course			
Course Code: 511505		Combinatorics	Credits: 5	Hours: 6	
Objectives	 Make the students familiar with fundamental combinatorial sonaturally appear in various other fields of Mathematics and Compute Give the structures to represent mathematical and applied questions become comfortable with the combinatorial tools commonly used to 				
	>	become comfortable with the combinatorial t structures. Provide the existence or non-existence of the objects, and understand their underlying struc	object, compu		
Unit - I		tations and combinations – Distributions of tinct objects – Stirling's formula.	of distinct object	cts – Distributions of	
Unit - II	permut – Ferre	ating functions – Generating function for ations distributions of distinct objects into nor ers graphs – Elementary relations.	n distinct cells -	- partitions of integers	
Unit - III	Recurrence relation – Linear recurrence relations with constant coefficients- solutions by the technique of generating functions – A special class of nonlinear difference equations – Recurrence relations with two indices				
Unit - IV	The principle of inclusion and exclusion – General formula – Permutations with restriction on relative positions – Derangements – Rook polynomials – permutations with forbidden positions				
Unit - V	theorem	s theory of counting – Equivalence classes un n – Equivalence classes of functions – Wei s fundamental theorem – Generalization of Pol	ghts and inver		
Reference & Cameron, P.J.	Textbook		÷	ambridge University	
Press.					
Liu, C.L., Edd	lberg, M.	(1968). Solutions to problems in Introduction	to Combinatori	al mathematics. New	
York: N	/IC Graw-	Hill Book & Co.			
Liu, C.L. (196	68). Introd	duction of Combinatorial Mathematics. New Y	ork: McGraw	Hill Book Co.	
Stanley, R.P.(1997). Er	numerative Combinatorics, Volume I, Cambrid	lge Studies in A	Advanced	
Mathem	atics, Vol	lume 49. Cambridge University Press.			
Outcomes		uccessful completion of this course, students v Utilize Mathematics and Computer Applica Mathematics. Practice problem solving techniques that the non-constructive existence proofs and the pro-	tions to solve y know, and le	arn new ones, such as	

Name of the Course Teacher Dr. J. Vimala Assistant Professor Department of Mathematics

		Elective Course		
Course Code:		Algebraic Number Theory	Credits: 5	Hours: 6
51150	-			
Objectives		ain an understanding and appreciation of alg		
		ith the basic objects of study, namely number		
		nable them to become comfortable working		
		volved, to appreciate the failure of unique		in general, and to see
T T 1 / T		oplications of the theory to Diophantine equat		· · · · · · · · ·
Unit - I		aic numbers – Conjugates and discriminants		ntegers – Integral bases
T T 1 4 T T		s and traces – Quadratic fields – Cyclotomic f		
Unit - II		zation into irreducibles – Example of non-	A	
		e factorization – Euclidean domains – Euclid		neids – Consequences
Unit - III		e factorization – Ramanujan-Nagell theorem - Prime factorization of fields – Norm of an ic		
Unit - IV		\mathbf{s} – Quotient torus – Minkowski's theorem –		ra theorem the four
		heorem – The space L.	- me two-squa	ue meorem – me rour-
Unit - V		's last theorem – Historical background –Ele	ementary con	siderations_Kummer's
Omt - v		– Kummer's theorem.	ementary con	siderations- Rummer s
Reference & T				
		Course in Algebraic Number Theory. USA: 1	Dover Publica	tions.
Samuel, P.(19	70).Algeb	raic Theory of Numbers. New York: Dover P	ublications, M	lineola.
Stewart, I., Ta	ll, D. (20	02). Algebraic Number Theory and Fermat's	Last Theorem	a (3 rd ed.). Chapman
and Hall	Mathema	tics Series.		
Weiss, E.(196	3).Algebr	aic Number theory. New York: Mc Graw Hill		
Outcomes	At the e	end of this module students should be able to u	understand:	
	\succ	The concept (definition and significance) of	of algebraic r	numbers and algebraic
		ntegers.		-
		How to factorize an algebraic integer into irred		
		The ideals of a ring of integers in an algebraic		
		The class group, and find the class order in so	me cases.	

Name of the Course Teacher Dr. J. Vimala Assistant Professor Department of Mathematics

		Elective Course			
Course Co 511502		Theory of Operators	Credits: 5	Hours: 6	
Objectives	 jectives Examine the basic techniques for the spectral analysis of linear operators. Focus on applications of the theory to the study of the Laplace operator. 				
Unit - I					
Unit - II		ct linear operators on normed spaces - t linear operators on normed spaces.	- Properties -	- Spectral properties of	
Unit - III		r equations involving compact linear opera m alternative.	ators – Theore	ems of Fredholm type –	
Unit - IV		properties of bounded self adjoint linear of a positive operator.	operator – Pos	itive operators – Square	
Unit - V		ion operators and their properties – S I self adjoint linear operators.	Spectral family	y – Spectral family of	
Reference & Ahiezer, N.I.,		: I.M.(1961).Theory of Linear Operators in I	Hilbert Spaces	. New York: Ungar.	
•		purse in Functional Analysis. New York: Sp	e e		
• •		roductory Functional Analysis with its Appl actional Analysis. Warszawa, Wiley- Inder S		Wiley.	
Outcomes		end of the course, students should be able to Grasp the fundamental language of spectral Manipulate the elements of the theory of co Hilbert spaces. Understand the Dirichlet Laplacian as an op Describe the basic spectral properties of segment and on polygons. Understand the fundamental idea behind transplantation.	theory. ompact linear sperator with a contract the Dirichlet	compact resolvent. Laplace operator on a	

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course		
Course Co		Theory of Automata and Formal	Credits: 5	Hours: 6
511508	3	Languages		
Objectives		troduce the concepts in automata theory and		
		entity different formal language classes and t		
		esign grammars and recognizers for different		
	> Pr	ove or disprove theorems in automata theory	using its prope	erties.
Unit – I	The theo	bry of automata		
Unit – II	Formal	languages		
Unit – III	Regular	sets and regular grammars		
Unit – IV		free languages		
Unit – V	Push do	wn automata and Turing machines		
Reference &T	'extbooks	5:		
John Hopcroft,	E., Motv	vani, R., Ullman, J.D.(2011). Introduction to A	Automata Theo	ry, Languages and
Compute	ation (3 rd)	ed.). Pearson Education, India.		
Linz, P.(2012).	Introduct	tion to Formal Languages and Automata. Jor	es and Barlett	Learning, LLC.
Mishra, K.L.P.	, Chandra	asekaran, N. (2018). Theory of Computer Sci	ence (Automate	a, Languages and
Computa	tion) (3 rd	ed.)., Prentice Hall Of India.		
Sipser, M.(201	3).Introd	uction to the Theory of Computation. USA: C	Cengage Learnin	ng.
Outcomes	After the	e successful completion of this course, the stu	udent will be ab	ble to
	\triangleright	Classify machines by their power to recognize	ze languages.	
	\triangleright	Employ finite state machines to solve proble	ms in computir	ıg.
	\triangleright	Explain deterministic and non-deterministic	machines.	
	\checkmark	Comprehend the hierarchy of problems arisin	ng in the compu	ater sciences.

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

	Elective Course				
Course Code:		Algorithmic Graph Theory	Credits: 5	Hours: 6	
511509					
Objectives		Theorems will be stated and proved formally Various graphs algorithms will also be taught	•		
Unit – I	Adjace	ncy matrices and adjacency lists, Depth Firs	-		
		nnectivity.			
Unit – II	Planar Algorit	graphs – Genus, Crossing Number and Thick hm.	ness, Dual Gr	aphs, Planarity Testing	
Unit – III	•	ngs and Eulerian graph, The Chinese Postman	problem for	directed and undirected	
Unit – IV	-	Colourings – Vertex and Edge Colourings, Celour theorems, Dominating and Independent	-	ynomials, Four colour	
Unit – V	Comple problem	exity of graph problems - P and NP clasns.	ses, Cook's	theorem, NP-complete	
Reference &T	'extbook	s:			
Berge, C. (199	1). <i>Grap</i>	hs. First Edition, North Holland.			
Bollabas, B. (1	979). Gr	aph Theory: An Introductory Course. Springe	er Verlag.		
Gary Chartran	d, Ortrud	R. (1992). Applied and Algorithmic Graph Th	heory. Mc Gra	w Gill.	
Gibbons, A. (1	985). Al	gorithmic graph theory. Cambridge Universit	y Press.		
Golumbic, M.	C. (1980)	. Algorithmic Graph Theory and Perfect Grap	hs. Academic	Press.	
Rosan, K. H. (2	2005). <i>G</i>	raphs, Algorithms and Optimization. CRC Pre	ess, Florida, U	SA.	
Outcomes	 After the successful completion of this course, the student will have: ➤ A strong background of graph theory which has diverse applications in the areas of computer science, biology, chemistry, physics, sociology, and engineering. 				

Name of the Course Teacher Dr. S. Amutha Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course		
Course Code: 511510		Coding TheoryCredits: 5Hours: 6		Hours: 6
Objectives		Learn the principles of the theory of info Code the channels without interference. Study the principles of the algebraic the theories in contemporary communication	ory of coding and th	ne importance of those
Unit – I	Perfect	lefinitions – Weight – Maximum – Like codes – Hamming codes – Sphere – Pack	king bound - Self-du	
Unit – II		e-error-coding, B.C.H. code – Finite field		
Unit – III		codes – The generator polynomial of the binary cyclic codes.	ne dual code – Iden	npotents and minimal
Unit – IV	IV The group of a code – Quadratic residue codes – Groups of quadratic residue code Permutation decoding – Cyclic codes given in terms of roots – properties of B. codes.			
Unit – V	-	t distributions – Weights in homogeneou ower moments – Gleason polynomials.	us codes – The Mac	Williams equations –
Reference & T	extbook	is:		
Ling, S. and X	ing, C. (2	2004). Coding Theory - A First Course. C	Cambridge Universit	y Press.
Pless, V. (1981	l). Introc	duction to The Theory of Error-Coding C	odes. John Wiley an	nd Sons.
Roman, S. (19	97). Intro	oduction to Coding and Information Theo	ry. Springer-Verlag	
Ron Roth, M.	(2006).In	ntroduction to Coding Theory. Cambridge	University Press.	
Van Lint, J.H.	(1992). 1	Introduction to Coding Theory. Springer-	Verlag, Berlin, Heid	lelberg.
Outcomes	A A	ne successful completion of this course, the Understand the concept and importance of communication, developing the abilitheory. Understanding and implementing codes optimization problems. Understand the principles of binary be codes.	of the amount of in ity of solving typic s and source of inf	formation, the system cal tasks from coding formation and solving

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course				
Course Co	ode:	Fluid Dynamics	Credits: 5	Hours: 6		
511511						
Objectives	▶prob▶	Develop an understanding of fluid dynamics ety of other fields. Learn to use control volume analysis, to d lems. Understand and use differential equations	evelop basic	equations and to solve		
		tions in internal and external flows.		1 1 7		
Unit – I		uids and ideal fluids – Velocity – Stream I y potential	ines – Steady	and unsteady flows –		
Unit – II	Vorticity vector – Equation of continuity – Euler's equation of motion – Bernouli's equation – Some three dimensional flows.					
Unit – III		\mathbf{s} – Doubles – Images in a rigid infinite pla tric flows.	ne – Images i	in solid spheres – Anti		
Unit – IV	Irrational motions – Use of cylindrical polar coordinates – Stream functions – Complex potential for two dimensional.					
Unit – V	Irratio	nal incompressible flow – Complex velocity ms of conformal transformation.	potentials – T	Two dimensional image		
Reference & T						
Chorlton, F. (1	985). Te:	xt Book of Fluid Dynamics. New Delhi: CBS	Publications.			
Batchaelor, G.	K. (2005). An Introduction to Fluid Dynamics. New D	elhi: Foundat	ion Books.		
Rathy, R.K. (1	976). An	Introduction to Fluid Dynamics. New Delhi:	IBH Publ. Co	omp.		
Yuan, S.W. (1	976). <i>Fo</i> i	undations of Fluid Mechanics. New Delhi: Pro	entice Hall of	India Pvt. Ltd.		
Outcomes		 P76). Foundations of Fluid Mechanics. New Delhi: Prentice Hall of India Pvt. Ltd. After completing this course students will apply the: > Bernoulli equation to solve problems in fluid mechanics. > Control volume analysis to problems in fluid mechanics. > Potential flow theory to solve problems in fluid mechanics. > Performance dimensional analysis for problems in fluid mechanics. > Knowledge of laminar and turbulent boundary layer fundamentals. 				

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course			
Course Code: 511512		Object Oriented Programming And C++	Credits: 5	Hours: 6	
Objectives	 Perform object oriented programming to develop solutions to problems demonstrating usage of control structures, modularity, I/O. and other standard language constructs. Demonstrate adeptness of object oriented programming in developing solutions to problems demonstrating usage of data abstraction, encapsulation, and inheritance. 				
Unit - I	Benefit: Manipu	action to C++ - Object Oriented Programmi s – Languages of OOP. C++ data types – c lators – Functions.	operators – C	in and Cout streams –	
Unit - II	Object and classes – Messages – Access specifier – Data encapsulation – Definition and declaration of member functions – Constructor and destructor – Inline function – Friend function – Static data and member function.			nline function – Friend	
Unit - III	Pointers: Pointers and references – This pointer – Strings – New and delete operators – Dynamic constructors – Problems with pointer reference Copy constructor.				
Unit - IV	Polymorphism: Compile time polymorphism – Function overloading – Operator overloading – Overloading unary operators – Overloading binary operators – Pitfalls of operator overloading.				
Unit - V	Reusability: Inheritance – Types of inheritance – Inheritance access specifier – Derived and base classes – Runtime polymorphism – Static and dynamic binding – Virtual function – Pure virtual function – Virtual base class – Abstract class.				
Reference & T					
		006). Object Oriented Programming with ANS	SI and Turbo	C++. Pearson	
		td, Singapore.		~	
	, E. (2018	B). Object oriented programming in C ++ (7 th ϵ	ed.). Tata Mc	Graw Hill publications	
Ltd.					
-		nd Object Oriented Programming Paradigm, H			
		ct Oriented Programming In Turbo C++. Gal		tion Pvt. Ltd.	
Outcomes	J K I K	e completion of the course, students will be ab Jnderstand object oriented programming and a Be able to explain the difference between procedural programming.	advanced C+-		

Name of the Course Teacher Dr. A. Nagarajan Assistant Professor Department of Computer Applications

		Elective Course			
Course Co		Skills in Latex	Credits: 5	Hours: 6	
511513					
Objectives		learn the basic functions of Latex and to	o explore some	of the more advanced	
	features available.				
		develop their skills in order to more fully		· · · · ·	
Unit – I		betex to help manage their references in relat			
Unit – I		Symbols and Commands: Command na tions – Lengths – Special characters – Fine			
Unit - II		ent Layout and Organization: Docume			
Unit - II		ent – Table of contents.	$\sin \cos \theta = 1 \mathrm{dg}$	e style = 1 arts of the	
Unit - III		ved Text: Changing font – Centering and	indenting – Lis	ts – Generalized lists –	
		m like declarations – Tabulator stops.	U		
Unit - IV	Display	ved Text: Boxes – Tables – Printing literal	l text – Footnote	es and marginal notes -	
	Comme	ents within text.			
Unit - V		matical Formulas: Mathematical environ			
	Mathen standar	natical symbols – Additional elements - d latex.	- Fine tuning	Mathematics- Beyond	
Reference & T					
Kopka, H., Da	ly, P.W.(2003).A Guide to LATEX, Fourth Edition, L	ondon: Addisio.	n Wesley.	
Kottwitz, S.(20	011). <i>Late</i>	x Beginners Guide. Packt publishing.			
Lamport, L.(19	994). <i>Late</i>	x: A document preparation system. Addisor	n Wesley Profes	sional.	
Mittelbach, F.((2007). <i>Th</i>	ne Latex Graphics Companion (2 nd ed.). Add	lison-Wesley Pr	ofessional.	
Mittelbach, F.,	Goossen	s, M., Braams, J., Carlisle, D., Rowley, C.(2004).The Latex	Companion. Addison-	
Wesley F	Profession	nal.			
Outcomes	Upon co	ompletion of the course, students will be ab	le to		
	\succ	Typeset mathematical formulae using LaT	ſeX.		
		Use the preamble of LaTeX file to define			
		Use nested list and enumerate environmer			
		Use tabular and array environments within			
	\triangleright	Use various methods to either create or in	port graphics in	to a LaTeX document.	

Name of the Course Teacher Dr. R. Jeyabalan Assistant Professor Department of Mathematics

		Elective Course						
Course Co 511514		Measure And Integration	Credits: 5	Hours: 6				
Objectives	 Understand the abstract measure theory, definition and main properties of the integral. Construct Lebesgue's measure on the real line and in <i>n</i>-dimensional Euclidean space. Explain the basic advanced directions of the theory. 							
Unit – I		re on the Real line – Lebesgue's Outer r et Measure Spaces – Measures and Outer						
Unit - II	Measur Measur	re on the Real Line – Measurable ability.	e functions – H	Borel and Lebesgue's				
Unit - III		tion of Functions of a Real Variable – neral Integral – Integration of series -Rier						
Unit - IV	0	Measures and their Derivatives position – The Jordan Decomposition – th	•					
Unit - V		re and Integration in a Product Space - t Measure and Fubini's Theorem.	 Measurability in 	a Product Space – The				
-	2011). <i>M</i>	easure theory and Integration. Wiley Eas						
		2). <i>Real Analysis, Modern Techniques an</i> ce Series of Texts.	nd their Applicatio	ns. Secod Edition,				
•		V.P. (2000). Lebesgue Measure and Integ	ration. New Age	Int. (P) Ltd., New				
Royden, H.L.	(1993). <i>R</i>	eal Analysis. Mc Millian Publ. Co, New	York.					
Rudin, W. (19	66). <i>Real</i>	and Complex Analysis. Tata McGraw Hi	ll Publ. Co. Ltd., I	New Delhi.				
Serge Lang. (1	993). Red	al and Functional Analysis. Springer.						
Outcomes	~	e successful completion of this course, st Demonstrate understanding of the basic general Lebesgue's integral. Prove basic results of measure theory ar Demonstrate understanding of the st integral convergence theorems, and thei	concepts underly nd integration theo atement and proo	ing the definition of the ory.				

Name of the Course Teacher Dr. B. Sundaravadivoo Assistant Professor Department of Mathematics

		Elective Course		
Course Co	ode:	Calculus of Variations & Integral	Credits: 5	Hours: 6
511515		Equations		
Objectives	\succ	Deals with the definition of the Maxima a	nd Minima a	nd application of the
		problem.		
		Discuss problem of constraints and Lagran	nge'smultiplie	rs, Variation and its
T T 1 / T		properties.	7D1	1 / NT / 1
Unit - I		us of variations – Maxima and Minima		
		ry and transition conditions – Variational ints and Lagrange'smultipliers–Variableendpo		
Unit - II		iction - Problem of brachistochrone - Problem		
Omt - H		1 - Variation and its properties - Functions and		
		on of extrema of a function and a functional.	u runetionui	
Unit - III		Transform : Definition – Inverse formula –	- Some import	ant results for Bessel
	function	n – Linearity property – Hankel Transform of	the derivativ	es of the function –
		Fransformofdifferentialoperators–Parsaval'sTh		
Unit - IV		Integral Equations - Definition, Regular		
		- Eigen values and eigen functions - Conv		
		product of two functions – Notation – Re		•
Unit - V		ns – Examples – Fredholmalternative-Exam		
Unit - V		d of successive approximations: Iterative l equation – Examples – Some results abo		
		Im Theory: the method of solution of Fredh		
		theorem – Thirdtheorem.	ionni i reanc	in s nist theorem
Reference &				
Hildebrand, F	F.B. (1972	2). <i>MethodsofAppliedMathematics</i> (2 nd ed.).P	HI,ND.	
Ram Kanwal,	, P. (1971). Linear Integral Equations Theory and Pro	actice. Acadei	nic Press.
Vasishtha, A	.R. and C	Gupta, R.K. (2002). Integral Transforms. k	Krishna Praka	shan Media Pvt
Ltd, Ind	dia.			
Outcomes	After th	e successful completion of this course, the stud	lent will be ab	le to
	\succ	Define and recognize Maxima and minima pro	oblem and Cal	culus of variation and
		its application.		
	\succ	Define and recognize Decomposition,		
		approximation, Successive substitution metho		Im Integral Equations
		Ability to apply in a correct mathematical way	Ι.	

Name of the Course Teacher Dr. R. Jeyabalan Assistant Professor Department of Mathematics

		Elective Course					
Course Co	ode:	MATLAB	Credits: 5	Hours: 6			
511516							
Objectives	➢ Working with the MATLAB user interface.						
		ring commands and creating variables.					
		yzing vectors and matrices.					
		alizing vector and matrix data.					
		king with data files, data types and .wr tions.	iting programs with	branching, loops and			
		mons. mating commands with scripts.					
Unit - I		uction – Basics of MATLAB, Input-Ou	utnut File types D	atform dependence			
Unit - I		l commands	uput, The types – Th	autorni dependence –			
Unit - II		tive computation: Matrices and vectors	s – Matrix and array	operations – Creating			
		and using Inline functions – Using Built in functions and Online help – Saving and loading data – Plotting simple graphs.					
Unit - III		mming in MATLAB: Scripts and fur	nctions - Script file	es – Function files –			
		ge specific features - Advanced data obj					
Unit - IV		ations – Linear Algebra – Curve fittin					
		statistics – Numerical integration – Ordinary differential equations – Nonlinear algebraic					
	equatio						
Unit - V		ics: Basics 2D plots – Using subplot to la		s – 3D plots – Handle			
D.f		s – Saving and printing graphics – Errors	S				
Reference & T Dolores Etter,		s: d C. Kuncicky, (2004). Introduction to N	Matlab 7. Prentice Ha	ıll.			
Edward Magra	ab, B. Bal	lakumar, B. Duncan, J. Walsh, G. Azarm	, S., Keith E. Herold	, (2000). An			
-		to Matlab. (3 rd ed.). Pearson.	, ,	, , ,			
Rudra Pratap.	(2010). C	Getting Started with MATLAB – A Quick	k Introduction for Sc	ientists and			
Enginee	ers. Oxfor	d University Press.					
Stephen J. Cha	apman, (1	999). Matlab Programming for Engineer	rs. (4 th ed.). Cl Engin	eering.			
William John.	John. P. (2005). Introduction to Matlab 7 for Engineers. Mc Graw-Hill Professional.						
Outcomes	After th	e successful completion of this course, s		.0			
	\triangleright						
		r r · · · · · · · · · · · · · · · · · ·					
		Analyze the program for correctness and verify it under simulation environm					

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Elective Course		
Course Co 511517		Financial Mathematics	Credits: 5	Hours: 6
Objectives	lin nu > Kr an > De Br > Ap vic > Ap	ady the active and practical use of mathematic ear algebra, calculus, partial differential equi- merical mathematics. now the price popular types of financial derive d create financial strategies which use these de- evelop mathematically model phenomena usin ownian motion. oproximate discrete stochastic processes by op- ce versa. oply the "efficient market hypothesis" and plications in various financial modeling situation live the Black-Scholes equation with the ap- nditions to model the value of a financial derive	ations, and st vatives such a crivatives to re g stochastic p continuous sto the Arbitrag ions. propriate bou	tochastic calculus, and s Put and Call options duce risk. rocesses and geometric ochastic processes and ge Theorem and their indary and final/initial
Unit - I	interes	Financial Calculations: Introduction: financia t, index linked securities etc.; the time value onary conditions; accumulating factors, for ns.	of money; no	minal Vs. real interest,
Unit - II	continu equation	ties and Equation of Value: Discounting nous cash flows; level annuities, deferred a on of value and yield on transaction, probab hedules; consumer credit: flat rate and APRs.	and increasing	g/decreasing annuities,
Unit - III	financi return, return;	I Budgeting Techniques and Compound al statement, assessing financial performance payback period; projects with different live fixed interest securities, uncertain income sec nce for capital gains and indexation.	e, net present s; money and	value, internal rate of time weighed rate of
Unit - IV	Arbitr arbitrag known rates; c of time	age, Forward Contracts, and Term Struc ge assumption; forward contracts, calculating dividend yield; hedging, fixed cash income; continuous time spot rates and forward rates; e; term structure of interest rates; yield curve ization; interest rate risk.	the forward p ; Discrete tim instantaneous	rice for a security with e and continuous time forward rates; theories
Unit - V	Stocha fixed a borrow corpora conver	stic Interest Models and Investments: Sin and varying interest model, log normal dist rings, government bonds, tax, security, market ate debt, debentures, unsecured loan stocks, tibles, property, derivatives, future, range of f , short interest futures, stock index futures.	tribution; fixe tability and re eurobonds,	d interest government turn; government bills: certificates of deposit,
Reference &	Fextbook	(S:		
		L. (1996). <i>Financial Calculus</i> . Cambridge Un E. (1998). <i>Matheds of Mathematical Finance</i>	•	
		.E. (1998). Methods of Mathematical Finance.B. (1991). Applied Financial Mathematics. Provide the Applied Financial Mathematics.	1 0	
		Introduction to Mathematical Finance. Camb		ity Press Norton
London		interaction to manenancar i mance. Callo		<i>u_j</i> 11000, 11011011,
		ore, K. (1997). Quantitative Methods in Finan	ce. Internation	al Thomson Business
Press.		· · · · · · · · · · · · · · · · · · ·		

Outcomes	After the successful completion of this course, students will be able to:				
	> Determine and select the most appropriate standard mathematical, statistical				
	and computational methods for specifying mathematical problems in banks				
	and other financial institutions through a critical understanding of the relative				
	advantages of these methods, and to develop extensions to these methods				
	appropriate for the solution of non-standard problems.				
	\succ Know the main features of models commonly applied in financial firms, be				
	able to express these mathematically and be able to appraise their utility and effectiveness.				
	Explain and critically appraise the rationale for the selection of mathematical				
	tools used in the analysis of common financial problems.				
	> Demonstrate the appropriateness of modeling or numerical solutions in				
	analyzing common problems in banks and other financial institutions.				
	Select and apply numerical solutions in appropriate areas of finance.				
	Undertake a piece of directed research in mathematical finance.				

Name of the Course Teacher Dr. N. Anbazhagan Professor& Head Department of Mathematics

		Elective Course					
Course Co	ode:	Data Analytics	Credits: 5	Hours: 6			
511518	.						
Objectives	 Optimize business decisions and create competitive advantage with Big Data analytics Explore the fundamental concepts of big data analytics. 						
		arn to analyze the big data using intelligent tec					
		derstand the various search methods and visual		ques.			
		arn to use various techniques for mining data s		1			
		derstand the applications using Map Reduce C					
	> Int	roduce programming tools PIG & HIVE in Ha	adoop echo syst	tem.			
Unit - I	Conver	uction to big data : Introduction to Bintional Systems - Intelligent data analysis – i ols - Analysis vs Reporting.	-	-			
Unit - II		g data streams : Introduction To Streams (
		cture - Stream Computing - Sampling Data					
		ng Distinct Elements in a Stream – Estimating	•	e			
		w – Decaying Window - Real time Analytics - Real Time Sentiment Analysis- Stock Mark		P) Applications - Case			
Unit - III		p: History of Hadoop- the Hadoop Distribution		em – Components of			
	Hadoop Analysing the Data with Hadoop Scaling Out- Hadoop Streaming- Design of HDFS-Java interfaces to HDFS Basics- Developing a Map Reduce Application-How Map Reduce Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort – Task execution - Map Reduce Types and Formats- Map Reduce						
Unit - IV		sHadoop environment. works: Applications on Big Data Using Pig a	and Hive _ Data	nrocessing operators			
	in Pig -	- Hive services – HiveQL – Querying Data in eper - IBM InfoSphere BigInsights and Stream	n Hive - fundai				
Unit - V	Predic	tive Analytics- Simple linear regression- Mul	ltiple linear reg				
		gression coefficients. Visualizations - Visual	data analysis to	echniques- interaction			
		ues - Systems and applications.					
Reference &T			~~~				
		Hand. (2007). Intelligent Data Analysis. Sprin	-				
		Deutsch, T. Lapis, G. Zikopoulos, P. (2012). Un	8	ig Data: Analytics for			
-		Hadoop and Streaming Data. McGrawHill Pu	-				
		08). Data Mining Concepts and Techniques. S					
		ng the Big Data Tidal Wave: Finding Opportu	unities in Huge	Data Streams with			
Advanced	l Analyti	cs. John Wiley& sons.					
Glenn J. Myatt	t, (2007).	Making Sense of Data. John Wiley & Sons.					
Outcomes	 After the successful completion of this course, students will be able to: ➤ Gather sufficient relevant data, conduct data analytics using scientific methods, and make appropriate and powerful connections between quantitative analysis and real-world problems. 						
		 Demonstrate a sophisticated understanding the exact scopes and possible limitations of of using data analytics skills to provide making. Use advanced techniques to conduct the 	of each method e constructive	; and show capability guidance in decision			

interpret the results correctly with detailed and useful information.
\succ Show substantial understanding of the real problems; conduct deep data
analytics using correct methods; and draw reasonable conclusions with
sufficient explanation and elaboration.
Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
Make better business decisions by using advanced techniques in data analytics.

Name of the Course Teacher Dr. N. Anbazhagan Professor & Head Department of Mathematics

		Elective Course					
Course Co 511704		Effective Communication And Soft Skills	Credits: 5	Hours: 6			
Objectives		xpose the students to the channels and levels of cquaint them with the strategies. in planning,					
Unit – I		nication, The flow of communication, The nication-Verbal & Non-verbal, Barriers to eff	levels of con	munication, Types of			
Unit – II	Writing Express Warnin	rsation skills & Basic etiquettes) Modes g, Introducing, Congratulating, Giving op- sion of agreement, Disagreement, Giving or g and gratitude etc. Telephone conversation- ven to enable the students understand and use	pinion and ders, Advice, Dos and Dor	Granting permission, Suggestion, Apology, Its (Specific dialogues			
Unit – III	introdu present	(Presentation Skills) Preparing, Planning and presenting a talk. Preparing for the introduction, Body and conclusion of presentation structure, Language and delivery of the presentation how to Make an Impressive Presentation? Analyzing Audience and Locale The Use of Audio-Visual Aids.					
Unit – IV	the Giv Rudene	(Group Communication) Behavior Pattern –peer Group – Cooperation – Analysis is of the Given Topic- Arguments and Force of Expressions - Avoiding interference and Rudeness Language-Guiding the Group Members at points of dullness - Leadership Qualities – Summing Up.					
Unit – V	Prepari	(Writing Skills) Writing Letters, The Essentials of Letters, Writing Job Applications, Preparing a Resume and Resume Types, Advantage and Disadvantage of E-mail, Advantage and Disadvantage of Advertisements.					
Reference & T Bill R. Swetm	Fextbook	<u> </u>	Chennai: Esw	ari Press, First South			
Asian Ec	lition.						
Dutt, Kiranma	i and Geo	etha Rajeevan, (2006). Basic Communication S	Skills. New De	elhi: Rev. Ed.			
Foundati	on books	Pvt. Ltd, Cambridge House.					
Outcomes	 After the successful completion of this course, students will be able to Demonstrate an understanding of interpersonal skills as part of effective communication processes. Identify the significance of attitudes, values and perceptions in interpersonal communication. 						

Name of the Course Teacher Dr. M. Kanimozhi Assistant Professor Department of English

		Non- Major Elective Cours	se	
Course Co 541104		Image Processing And Pattern Recognition	Credits: 2	Hours: 3
Objectives	 Un seg Im im Ap 	sess and understand the challenges behind t iderstand the general processes of imag gmentation, representation, and description. plement filtering and enhancement algorit ages. ppreciate the challenges and understand th	ge acquisition	n, storage, enhancement, ochrome as well as color
Unit – I	Image time ca Image process Spatial geome	ttern recognition. model: Sampling- Image shape-Human apture- Video camera- Scanners satellite in Presentation: Raster screen printers – sors- Gray level transformation – Histogram ly dependent transformation – Templates tric – transformation.	magery- Rang Three dime n equalization and convolu	ging devices- Calibration- nsional imaging- Image - Multi image operation – ation – Two dimensional
Unit – II	edge D	t Region operation: Basic edge detection – Detection – Crack edge detection – Edge foll ning and closing operations.		
Unit – III	Image compre	compression: Statistical – Spatial compression – Fractal compression – Real time in rds – some application sketches.		6 5 6
Unit – IV	Introd and m functio	uction: Basic concept of pattern recognition ethodologies – Examples of automatic properties ons: Introduction – Linear decision function nentation of decision functions.	attern recogn	ition systems – Decision
Unit – V	Patter pattern seeking distance results pattern formal pattern	n Classification: Pattern classification by a classification – Single prototypes- Multi pag – Measures of similarity clustering criteriate algorithm- K-means algorithm- Isodata - Graph theoretic approach- Unsupervised classification by likelihood functions- Syr languages theory – formulation of syntactic description- Recognition grammar – structure interference.	rototypes – A a- cluster seel a, algorithm- l pattern reco ntactic pattern c pattern reco	design example – Cluster king algorithm- Maximum Evaluation of clustering ognitions- Introduction to recognition: Concepts of gnition problem- syntactic
Reference &	U			
Adrian Low, ((1991). C C. Gonza	Computer Vision and Image Processing. McClez, (1974). <i>Pattern Recognition principles</i> .		Vesley publishing
Processi	ng and P	D., Perez-cisneros, M. (2016). <i>Applications attern Recognition</i> . Switzerland: Springer In	nternational P	ublishing.
Shih, F.Y., (2	010). Ima	<i>Image Processing and Pattern Recognition</i> age Processing and Pattern Recognition: Fur y & Sons, Inc., Hoboke.		
Outcomes	After the second	 Know the foundational techniques of i filtering, segmentation and local features Build a statistical classifier and know ho 	mage process s.	sing and analysis such as

▶ Use image processing and pattern recognition techniques to detect objects and
activities in images and video.
Collaborate with team members to design a solution.
Use Matlab to develop scripts in these areas.

Name of the Course Teacher Dr. K. Shankar Department of Computer Applications

			Non-M	Iajor Elective	Course				
Course Co 541104			Discrete M	athematics		Credits: 2	Hours: 3		
Objectives	te	 To introduce a number of Mathematical Foundation to be serving as tools even today in the development of theoretical computer science. To gain some confidence on how to deal with problems. 							
Unit – I	theory		nce for the sta				- Normal forms – The lculus – Inference theory		
Unit – II	power Partitic Partiall	Set theory : Sets – Basic concepts – Notation – Inclusion and equality of sets – The power set – Relations and ordering – Properties – relation matrix and graph of a relation – Partition – Equivalence and compatibility relations – Composition – Partial ordering – Partially ordered set - Functions – Definition – Composition – Inverse – Binary and n-ary operations – Characteristic function – Hashing function.							
Unit – III	Algebraic structures - Algebraic systems: Examples and general properties – semigroups and monoids: Definitions and examples – Homomorphism of semigroups and monoids – Subsemigroups and submonoids – Groups: Definitions and examples – Cosets and Lagrange's theorem – Normal subgroups – Algebraic systems with two binary operations.								
Unit – IV	Graph	n theory:	Basic concep tation of grap		ns – Path	s – Reachab	ility and connectedness –		
Unit – V	Finite	probabi	ity – Probabi			ditional prob	pability – independence –		
Reference & Judith Gerstin			nematical Stri	ictures for Cor	mputer So	cience. (5 th e	d.). W.H.Freeman and		
Company	. (Unit V	7)							
Kolman, B., R	oberty B	Busby, C.,	Sharn Cutter	Ross, (2013).	Discrete	Mathematic	al Structures. (6 th ed.).		
Pearson E	ducation	1.							
-	., (2006)	. Discrete	Mathematica	al Structures w	ith applic	cation to Cor	nbinatorics. Universities		
Press.									
-							ications to Computer		
				c Company. (U		-			
Outcomes	After th		Develop Prot Enhance Ana	on of this cours blem-solving sl lytical skills. orative skills.		nts will be at	ble to		

Name of the Course Teacher Dr. B. Yasodara Department of Mathematics

Course Code: 541106 Methods of Mathematical Physics Credits: 2 Hours: 3 Objectives > Introduce the mathematical methods to solve physics problems. > Provide basic skills necessary for the application of mathematical methods in physics. > Provide basic skills necessary for the application of mathematical methods in physics. Unit - I Boundary value problems and series solution – Examples of boundary value problems – Eigen values, eigen functions and the Sturm-Liouville problem – Hermitian operators, their eigen values and eigen functions. - Unit - II Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. - Unit - IV Non homogeneous boundary value problems and Green's function – The Dirac Delta function. - Unit - IV Non homogeneous boundary value problems and Green's function. - Unit - V Green's function in higher dimensions – Green's function. - Intit - V Green's function of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. - Reference &Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. <			Non-Major Elective Course					
 ➢ Provide basic skills necessary for the application of mathematical methods in physics. Unit - I Boundary value problems and series solution – Examples of boundary value problems – Eigen values, eigen functions and the Sturm-Liouville problem – Hermitian operators, their eigen values and eigen functions. Unit - II Bessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. Unit – III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit – IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function a formal solution of electrostatic boundary value problems – Wave equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify different special mathematical functions. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in 	Course Code:				Hours: 3			
physics. Unit - I Boundary value problems and series solution – Examples of boundary value problems – Eigen values, eigen functions and the Sturm-Liouville problem – Hermitian operators, their eigen values and eigen functions. Unit - II Bessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. Unit - III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit - IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function in higher dimensions – Green's function. Unit - V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify different special mathematical functions. Identify different special mathematical functions. Identify diff	Objectives							
Unit - I Boundary value problems and series solution – Examples of boundary value problems – Eigen values, eigen functions and the Sturm-Liouville problem – Hermitian operators, their eigen values and eigen functions. Unit - II Bessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. Unit - III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit - IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function. Unit - V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to $>$ Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Zentin linear dependence and linear		≻ F	Provide basic skills necessary for the application	of mathematica	l methods in			
problems – Eigen values, eigen functions and the Sturm-Liouville problem – Hermitian operators, their eigen values and eigen functions. Unit – II Bessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. Unit – III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit – IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function - Fourier transform method of construction of Green's function. Unit – V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference &Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vect		-	5					
operators, their eigen values and eigen functions.Unit - IIBessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics.Unit - IIIHermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function.Unit - IVNon homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function.Unit - VGreen's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem.Reference &Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier.Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press.Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl.OutcomesAfter the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	Unit – I							
Unit - IIBessel functions – Bessel functions of the second kind - Hankel functions – Spherical Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics.Unit - IIIHermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function.Unit - IVNon homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function.Unit - VGreen's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem.Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier.Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press.Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl.After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Identify different special mathematical functions.		-		ouville problem	– Hermitian			
Bessel functions – Legendre polynomials – Associated Legendre polynomials and spherical harmonics. Unit – III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit – IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function. Unit – V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in	II			Inntral function	Subariaal			
spherical harmonics. Unit - III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit - IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function. Unit - V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	Unit – 11							
Unit - III Hermite polynomials – Laguerre polynomials – The Gamma function – The Dirac Delta function. Unit - IV Non homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function. Unit - V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Cutcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions.			÷	Legendre pory	nonnais and			
Delta function.Unit – IVNon homogeneous boundary value problems and Green's function – Green's function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function.Unit – VGreen's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem.Reference &Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier.Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press.Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl.OutcomesAfter the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	Unit – III			mma function	– The Dirac			
function for one dimensional problems – eigen function expansion of Green's function – Fourier transform method of construction of Green's function.Unit – VGreen's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem.Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier.Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press.Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl.OutcomesAfter the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in								
 Fourier transform method of construction of Green's function. Unit - V Green's function in higher dimensions – Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems – Wave equation with source – quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 	Unit – IV	Non ho	mogeneous boundary value problems and G	reen's function	n – Green's			
Unit - V Green's function in higher dimensions - Green's function for Poisson's equation and a formal solution of electrostatic boundary value problems - Wave equation with source - quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in		function	for one dimensional problems - eigen function ex	pansion of Gree	en's function			
a formal solution of electrostatic boundary value problems – Wave equation with source - quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in								
- quantum mechanical scattering problem. Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	Unit – V		e		*			
Reference & Textbooks: Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to ▶ Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. ▶ Identify different special mathematical functions. ▶ Explain linear dependence and linear combination of vectors as quantities in				- Wave equation	n with source			
 Chattopadhyay, P.K. (1990). Mathematical Physics. New Age International (P) Ltd. Publishers. George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 								
 George Arfken, B. Hans Weber, J., Frank Harris, E. (2013). Mathematical Methods For Physicists, Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). <i>Mathematical Methods For Physics And Engineering</i>. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 				(D) I td Dublich	ore			
 Oxford, Uk: Academic Press, Elsevier. Riley, K.F. Hobson, M.P., Bence, S.J. (2006). Mathematical Methods For Physics And Engineering. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 	1 1							
 Riley, K.F. Hobson, M.P., Bence, S.J. (2006). <i>Mathematical Methods For Physics And Engineering</i>. Uk: Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 	Ū.			lethods For Phy	sicists,			
Cambridge University Press. Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	,							
Svozil, K. (2019). Mathematical Methods Of Theoretical Physics. (6 th Ed.). Funzl. Outcomes After the successful completion of this course, students will be able to > Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. > Identify different special mathematical functions. > Explain linear dependence and linear combination of vectors as quantities in	Riley, K.F. Hol	oson, M.P.	, Bence, S.J. (2006). Mathematical Methods For P	hysics And Engi	ineering. Uk:			
Outcomes After the successful completion of this course, students will be able to ▶ Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. ▶ Identify different special mathematical functions. ▶ Explain linear dependence and linear combination of vectors as quantities in	Cambridg	e Universit	ity Press.					
 Identify various types of matrices and explain how one type of matrix differs from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 	Svozil, K. (201	9). Mathei	matical Methods Of Theoretical Physics. (6 th Ed.).	Funzl.				
 from another explain the differences between matrices and determinants. Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 	Outcomes	After the	successful completion of this course, students will	be able to				
 Identify different special mathematical functions. Explain linear dependence and linear combination of vectors as quantities in 								
> Explain linear dependence and linear combination of vectors as quantities in				ces and determin	nants.			
				6				

Name of the Course Teacher Dr. R. Raja Assistant Professor Ramanujan Centre for Higher Mathematics

		Non-Major Elective Course			
Course Code:	541107	Classical Mechanics	Credits: 2	Hours: 3	
Objectives	 Develop the fundamental concepts in mechanics more rigorously as needed for further study in physics, engineering and technology. Apply advanced mathematical and computational techniques to complex problems. Contribute to the development of the student's thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems. 				
Unit – I	Constraints: Classification of constraints - Principal of virtual work. D'Alembert's principle and Lagrange's equations-Velocity dependent potentials and the dissipation function - Simple application problems (D'Alembert's, Lagrangian and Hamilton's).				
Unit – II	Lagrange Non-holo	Variational principles and Lagrange's equations: Hamilton's principle -Derivation of Lagrange's equations from Hamilton's principle - Extension of Hamilton's principle to Non-holonomic systems-Variational principle formulation - Conservation theorems and symmetry properties - Energy function and conservation of energy.			
Unit – III	The Hamilton equations of motion: Legendre transformation and the Hamilton's equations of motion-Cyclic coordinates and conservation theorems-Routh's procedure - Derivation of Hamilton's equations from a variational principle-The principle of least action.				
Unit – IV	Canonical transformations: The equations and examples of canonical transformations - The harmonic oscillator problem - Poisson brackets and other canonical invariants - Liouville's theorem.				
Unit – V	Hamilton-Jacobi theory: The Hamilton-Jacobi equation for Hamilton's principal function - The Harmonic oscillator problem - separation of variables in the Hamilton-Jacobi equation - Ignorable coordinates and the Kepler problem.				
Reference & Te Chandra, S. (200		cal Mechanics: A Textbook. UK: Alpha Science Intern	ational.		
Goldstein, H. (2	018). Clas.	sical Mechanics. (2 nd ed.). New Delhi: Narosa Publish	ing Home.		
John Taylor, R.	John Taylor, R. (2005). <i>Classical Mechanics</i> . (2 nd ed.). Sausalito, California: University Science Books.				
Panat, P.V. (201	3). Classic	cal Mechanics. New Delhi: Narosa Publishing Home.			
Rana, N.C. and	Joag, P.S.	(2015). Classical Mechanics. New Delhi: Tata Mc-Gra	w Hill Publish	ing	
Company	Limited.				
Synge J.L. and C	Griffth, B.A	A. (1970). Principles of Mechanics. New York: McGra	w Hill Book Co	э.	
Outcomes	 D as fc A E 	successful completion of this course, students will be a bemonstrate an understanding of intermediate classical s coordinate transformations, oscillatory motion, grav prces, and Lagrangian mechanics. apply their mathematics skills to intermediate classical xhibit an ability to use Newton's Laws of Motion and polution of physical problems.	al mechanics to vitation and oth mechanics prol	olems.	

Name of the Course Teacher

Dr. R. Raja, Assistant Professor Ramanujan Centre for Higher Mathematics

			Non-Major	Elective (Course		
Course Code: 541560		T	Managemei			Credits: 2	Hours: 3
Objectives	p ► K ► D	broblems. Know and ur Develop the	nderstand the problem m	e common hodeling a	and importan	t business prol	rn how to make
Unit - I	Linear programming: Formulations and graphical solutions to linear programming problems – Simplex method – Degeneracy – Unbounded – Infeasible solution – Method of penalty – Two phase method.						
Unit - II	problem -	– Assignme	nt problem.	•		•	– Transportation
Unit - III	Integer programming: Pure and mixed integer programming problems – Gomary cutting – Plane method – Fractional and mixed Algorithms – Branch and bound techniques.						
Unit - IV	Project scheduling - PERT-CPM: Phase of project scheduling – Arrow diagram – CPM – Probability and cost considerations in project scheduling – Crashing of networks.						
Unit - V	Queuing Theory: Queuing system – Characteristics of queuing system – Classification of queues – M/M/1 and M/M/C queuing models. Inventory management: Inventory control – ABC analysis – Economic lot size problems – EOQ with uniform demand and shortages – Limitations of inventories – Buffer stock – Determination of buffer stocks.						
Reference & Te							
Fredericks Hilli				•	Preetam Basu	. (2013). Intro	duction to
-			ill Education				
Hamdy Taha, A		-					
Pradeep Prabha					•		•
Swarup, K. Gup	ota, P.K. M	an Mohan. ((2016). Oper	cations Res	search. $(18^{th} \epsilon)$	ed.). Sultan Ch	and.
Outcomes	 U an B p D 	Jnderstand h nd managen Be familiar v problems enc	to know ment account with various of countered in a lytical and of	the model ing proble operations today's bu	operations ir ms using qua in manageme siness world	from an analyt	

Name of the Course Teacher Dr. B. Yasodhara Department of Mathematics

		Non-Major Elective Course	•					
Course Co		Descriptive Statistics	Credits: 2	Hours: 3				
541109								
Objectives		To acquaint students with some basic concepts in Statistics.						
		troduce the concept of statistics to some electronic data will be introduced	mentary statistic	al methods of analysis				
Unit - I		data will be introduced. - Scope – Functions, limitations, uses and	I miguage of sta	tistica Classification				
Unit - I	0	ulation of data - Diagrammatic and graphica						
Unit - II		re of central tendency - Measures of disper						
Omt - H		less and kurtosis - Lorenz curve.		incustices of dispersion				
Unit - III		itary probability space - Sample space	e - discrete pro	obability, independent				
		- Mathematical and statistical probability -						
		n and multiplication theorems - conditi						
		problems.						
Unit - IV		m variables - Discrete and continuous rand						
		lity mass function and probability densi						
	Expectation of a random variable - evaluation of standard measures of location,							
Unit - V	dispersion, skewness and kurtosis. Simple linear correlation and regression - Scatter diagram - Karl Pearson's correlation							
Unit - V								
	co-efficient and its properties - Spearman's correlation co-efficient. Regression equations– fitting of regression equations - regression coefficients and its properties.							
Reference & Textbooks:								
Goon, A.M. Gupta, M.K. and Dasgupta, B. (2008). <i>Fundamentals of Statistics, Volume-I</i> . Calcutta:								
World Pre	•		0					
Gupta S.C. an	Gupta, S.C. and Kapoor, V.K. (2000). <i>Fundamentals of Mathematical Statistics</i> . (10 th ed.).New Delhi:							
	•							
	Sultan Chand and Sons. Hogg, R.V. McKean, J.W. and Craig, A.T. (2013). <i>Introduction to Mathematical Statistics</i> . (7 th ed.).							
Pearson E			Mainemaileai Si	<i>uusuus. (1 cu.)</i> .				
· ·	Spiegel, M.R. Schiller, J. and Srinivasan, R.A. (2012). <i>Probability and Statistics, Schaum's Outline</i>							
Series. (4		w Delhi: McGraw- Hill Publishing Compan	•					
Outcomes		e successful completion of this course, stude						
		Know the three measures of central tende						
		Know when it is appropriate to use each n		•				
		8	s of central tend	ency inform you about				
		the shape of a distribution.						

Name of the Course Teacher Dr. N. Anbazhagan Professor & Head Department of Mathematics

		Non-Major Elective Course						
Course Code:		Biostatistics	Credits:2	Hours: 3				
541502								
Objectives		Provide an introduction to the basic concepts of statistical ideas and methods that aims						
		to equip students to carry out common statistical procedures and to follow statistical						
		ning in their fields of study.						
Unit - I		uction to biostatistics: Numerical summ						
		tendency- Mean, Median, Mode. Measures of Dispersion: Range, Inter-Quartile Range, Standard Deviation and Coefficient of Variation. Grouped data-Grouped mean, grouped						
		e, Chebyshev's Inequality.	louped data-O	ouped mean, grouped				
Unit - II		presentation – Types of numerical data	- Frequency	distributions relative				
Cint - II		icy. Graphs- Bar Charts, Histograms, Frequen						
	-	ots, Two-way scatter plots, Line graphs.	ey polygons, e	the way seatter riots,				
Unit - III		ence interval-Standard deviation, Gaussian of	listribution, co	onfidence interval of a				
	mean, S	Survival Curves. Comparing groups with con	fidence interva	ls-Confidence interval				
	of a di	fference between means, Confidence interva	al for the diffe	erence or ratio of two				
	proportions.							
Unit - IV	testing, multiple comparisons. Probability, Bayesian logic-Bayes theorem in genet							
	Population genetics, gene pool, allele frequency, genotype frequencies, Hardy-Weinberg							
	-	equation, implications of Hardy-Weinberg equation. Diagnostic tests-sensitivity and specificity, ROC curves, calculations of prevalence.						
Unit - V	Simple correlation-correlation coefficient. Regression-simple linear regression. Base							
Unit - v	idea of significance test-hypothesis testing, level of significance.							
Reference &			ignificance.					
			University Pre	ss. London				
Campbell, R.C. (1989). <i>Statistics for Biologists</i> . (3 rd ed.). Cambridge University Press, London. Daniel, W.W. (2008). Bio-Statistics: A Foundation for Analysis in the Health Science. John Wiley &								
		sio-Statistics: A Foundation for Analysis in th	e Health Scient	ce. John whey &				
Sons, In								
	Glantz, S.A. (2012). Primer of Bio-Statistics. (7th ed.). McGraw-Hill Professional Publishing, USA.							
Sokal, R.R. ar	nd Rohlf,	F.J. (1995). Biometry: The Principles and Pro	actice of Statist	ics in Biological				
Research	$h (3^{\rm rd} {\rm ed.})$. San Francisco, California: Freeman and Con	npany.					
Outcomes		ne successful completion of this course, studer						
	\succ Know the critical consumers of the public health and medical literature b							
		understanding the basic principles and n		<i></i>				
		disease (outcome) measures, measures of as	ssociation, stud	y design options, bias,				
	1	confounding, and effect modification.						

Name of the Course Teacher Dr. M.S. Anitha Department of Mathematics

Name	: Dr. N. Anbazhagan
Designation	
Address	: Department of Mathematics
	Alagappa University, Karaikudi
	obile : 04565 – 223500; +91 9790292525
E. Mail	: anbazhagann@alagappauniversity.ac.in, anbazhagan_n @yahoo.co.in
	nal Qualification
	n. D. (Mathematics) – Madurai Kamaraj University, Madurai, India. (2002).
	. Phil (Mathematics) - Madurai Kamaraj University, Madurai, India(1996).
	.Sc. (Mathematics) - Cardamom Planters Association College, Bodinayakanur.(1995).
	. Sc (Mathematics) - Cardamom Planters Association College, Bodinayakanur.(1993).
	G.D.C.A – ICC & CE of Madurai Kamaraj University, Madurai, India. (1996).
	rative Posts held during the Service:
	hairperson, School of Mathematics, Alagappa University, Karaikudi.(22.06.2015 to till date). ead, Department of Mathematics, Alagappa University, Karaikudi.(05.06.2015 to till date).
	nal Experience
	ofessor of Mathematics, Alagappa University, Karaikudi. (09.03.2013 to till date).
	ssociate Professor of Mathematics, Alagappa University, Karaikudi. (09.03.2010 to
	3.03.2013).
R	eader in Mathematics, Alagappa University, Karaikudi. (09.03.2007 to 08.03.2010)
L	ecturer in Mathematics, Thiagarajar College of Engineering, Madurai. (26.09.2001 to
08	3.03.2007)
	eaching Experience: 17years
	esearch Experience: 17 Years
Area of R	lesearch
	ochastic, Modelling, Datamining.
	and awards
	xcellence Award (2018) from Association of Inventory Academicians and Practitioners,
	ew Delhi.(23.12.2018).
	amilnadu Scientist Award (TANSA 2017) from Tamilnadu State Council for Science and
	echnology, Chennai, INDIA.(27.12.2019).
	utstanding Researcher Award (2017) from International Institute of Organized
	esearch (I2OR), Chandigarh, India.
	esearch Award (2014-16) from University Grants Commission (UGC), New Delhi, India
	hri P. K. Das Memorial Best Faculty Award (2013) from Nehru Group of Institutions,
	oimbatore, INDIA.
	areer Award for Young Teachers (2005) from All India Council for Technical Education
	AICTE), New Delhi, INDIA.
	oung Scientist Fellowship (2005) from Tamilnadu State Council for Science and
	echnology, Chennai, India.
	oung Scientist Award (2004) from Department of Science and Technology (DST), New Delhi, NDIA.
	iblications
	Kathiresan, K. Jeganathan and N.Anbazhagan, A retrial queueing-inventory system with
	rvice option on arrival and Multiple vacations. Afrika Statistika, 14(1), 1917-1936, 2019.
	I. Ravi and N. Anbazhagan, An E_cient Framework to Improve QoS of CSP using Enhanced
	Entertaine N. Andazhagan, An E_clent Framework to improve Qos of CSP using Enhanced Enimal Resource Optimization based Scheduling Algorithm. Indonesian J. of Electrical
	ngineering and Computer Science, 12(3), 1179-1186, December 2018.
E.	12(3), 11/3-1100, Determodel 2010.

D. Ramalingam, S. Arun and N. Anbazhagan, Novel Approach for Optimizing Governance, Risk management and Compliance for Enterprise Information security using DEMATEL and FoM. Procedia Computer Science, 134, 365-370, 2018.

V. S. S. Yadavalli, J. Kathiresan and N. Anbazhagan, A Continuous Review Inventory System with Retrial Customers and Two-Stage Service. Applied Mathematics & Information Sciences, 12(2), 441-449, March 2018.

Total Publications: 72, Total Citation: 528, h-index: 12, i10-index: 11.

Name	: Dr. C. Ganesa Moorthy	
Designation	: Professor	A
Address	: Department of Mathematics,	
	Alagappa University, Karaikudi	
Phone/ Mobile	: 04565 – 227607 , +919840653866	
E. Mail	: gmoorthyc@alagappauniversity.ac.in, ganesamoorthyc@gmail.com	

Educational Qualification

PhD (Mathematics) – Alagappa University, Karaikudi, India. (Part-time)(1995)
M.Phil (Mathematics) – Anna University, Chennai, India. (Part-time)(1985)
M.Sc (Mathematics) – V.H.N.S.N College, (Madurai Kamaraj University), India.(1983)
B.Sc (Mathematics) – V.H.N.S.N College, (Madurai Kamaraj University), India.(1981)
P.G.D.C.A (Computer Applications) - Alagappa University, Karaikudi, India. (Part-time)(1993)

Professional Experience

Teaching Assistant, Department of Mathematics, Anna University.(1983 to 1986) Lecturer, Department of Mathematics, Alagappa University.(1988 to 1996) Senior Lecturer, Department of Mathematics, Alagappa University.(1996 to 2000) Reader, Department of Mathematics, Alagappa University. (2000 to 2008) Professor, Department of Mathematics, Alagappa University. (2008 to 2013) Professor and Head, Department of Mathematics, Alagappa University.(2013 to 2015) Professor, Department of Mathematics, Alagappa University.(2015 – till date) Teaching Experience: 34 years Research Experience: 29 Years

Area of Research

Graph Theory Topology Functional Analysis

Achievements

Solved **50 year** <u>old problem</u> for Ph.D thesis and published in Cambridge University Press Journal

Thesis Title: MEASURE THEORY AND HAUSDORFF DIMENSION OF CANTOR POINT SETS OF CONTINUED FRACTIONS.

Recent Book Publications

Planets and Electromagnetic Waves, First Edition, Idea Publishing, 2018. (ISBN: 9789386518835, 938651883X).

Mathematics in Material Science, First Edition, Lambert Academic Publishing (Germany), 2019. (ISBN: 9786200084248, 6200084246).

Total Article Publications: 67

Name	: Dr. J.Vimala
Designation	: Assistant Professor
Address	: Department of Mathematics,
	Alagappa University, Karaikudi
Phone	: +91 9865409998
E. Mail	: <u>vimaljey@alagappauniversity.ac.in</u>

Educational Qualification

Ph. D (Mathematics) - Alagappa University, Karaikudi, India. (2007)

M.Sc. (Mathematics) -Alagappa University, Karaikudi, India. (2002)

B. Sc (Mathematics) -Sri Meenakshi College for Women, Madurai, India. (2000)

B. Ed - Annamalai University, Chithambaram, India.

PGDCA - Alagappa University, Karaikudi, India. (2004)

Professional Experience

Assistant Professor, Department of Mathematics, Alagappa University, Grade -2. (May 2016 to till date)

Assistant Professor, Department of Mathematics, Alagappa University, Grade -1. (May 2012 - 2016)

Teaching Experience: 15years

Research Experience: 12 Years

Area of Research

Algebra –Lattice Theory Fuzzy Algebra Decision Theory Soft computing

Honours & Award

Women Researcher Award-IOSRD 2018, International Research Awards in Engineering Science & Technology, Chennai.

Distinguished Woman in Science (Mathematics) VIWA 2017, Venus International Foundation, Chennai.

Best Researcher Award (Mathematics) IMRF 2016, International Multidisciplinary Research Foundation, Goa.

Recent Publications

Multiset Filters Of Residuated Lattices And Its Application In Medical Diagnosis - *Journal of Intelligent and Fuzzy Systems*. vol. 36, no. 3, pp. 2297-2305, 2019, **DOI:** 10.3233/JIFS-169940, ISSN 1064-1246 (P)

Implementation of anti-lattice ordered fuzzy soft groups and its matrix operations in deciding process"- Journal of Intelligent and Fuzzy Systems. vol. 35, no. 4, pp. 4857-4864, 2018 doi: 10.3233/JIFS-18914 ISSN 1875-8967 (E), ISSN 1064-1246 (P)

Morphisms on Lattice Ordered Interval-Valued Hesitant Fuzzy Soft Sets - Journal of Intelligent and Fuzzy Systems. vol. 36, no. 3, pp. 2307-2310, 2019, **DOI:** 10.3233/JIFS-169941, ISSN 1064-1246 (P)

4. Application of lattice ordered multi-fuzzy soft set in forecasting process - *Journal of Intelligent and Fuzzy Systems*. vol. 36, no. 3, pp. 2323-2331, 2019, **DOI:** 10.3233/JIFS-169943, ISSN 1064-1246 (P)

Total Publications: 32, Cumulative Impact factor: 10, Total citation: 68, h-index: 5.

Name	: Dr. R. RAJA
Designation	: Assistant Professor
Address	: Ramanujan Centre for Higher Mathematics
	Alagappa University, Karaikudi
Mobile Phone	: +91- 99435 98074
Fax	: 04565 - 225202
E. Mail	: rajarchm2012@gmail.com, rajar@alagappauniversity.ac.in

Educational Qualification

PhD (Mathematics)	-	Periyar University, Salem, India. (2011)
M. Phil (Mathematics)	-	Periyar University, Salem, India. (2006)
M .Sc (Mathematics)	-	Periyar University, Salem, India. (2005)
B. Sc (Mathematics)	-	Govt. Arts College Salem, Tamilnadu, India. (2003)

Professional Experience

Assistant Professor, RCHM, Alagappa University, Grade -2. (May 2016 to till date) Assistant Professor, RCHM, Alagappa University, Grade -1. (May 2012 -2016) Teaching Experience: 8 years Research Experience: 7 Years

Area of Research

Abstract & Fractional Differential Equations

Stability Analysis of Dynamical Systems

Neural Networks

Synchronization Theory

Mathematical Modeling and Population Systems

Genetic Regulatory Networks, Complex Dynamical Networks, Multi-Agent Systems

Honours& Awards

2018, Outstanding Reviewer Award for the year 2018in Mathematics and Computers in Simulation (Elsevier).

2017, Outstanding Reviewer Award for the year 2017 in Journal of the Franklin Institute (Elsevier).

2015, Awarded travel grant from NBHM for attending ICIAM in Beijing, China.

2014, Awarded travel grant from NBHM for attending ICM in Seoul, South Korea.

2010, Received Sir. C.V. Raman Budding Innovator Award from Periyar University, Salem. 2008, Awarded Senior Research Fellow under Rajiv Gandhi National Fellowship, New Delhi. 2005, Awarded Junior Research Fellow under Rajiv Gandhi National Fellowship, New Delhi. Publications

Recent Publications

A.Pratap, R.Raja, J.Cao, G.Rajchakit, Stability and synchronization criteria for fractional order Competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function, Journal of the Franklin Institute 356 (2019) 2212-2239. [SCIE, Elsevier Publication, IF: 3.576].

C.Sowmiya, R.Raja, R.P.Agarwal, G.Rajchakit, Passivity analysis for Uncertain discrete time BAM Neural Networks with leakage and mixed delay using novel summation inequality, International Journal of Control, Automation and Systems, 17 (8) 2019 2114-2124. [SCIE, Springer Publication, IF: 2.173].

C.Sowmiya, R.Raja, J.Cao, G.Rajchakit, A delay-dependent asymptotic stability criteria for uncertain discrete-time BAM neural networks with leakage and time varying delays: A novel summation inequality, Asian Journal of Control, 2018 (Accepted). [SCI, Wiley Balackwell Publication, IF: 1.528].

A.Pratap, R.Raja, J.Cao, G.Rajchakit, Fuad E.Alsaadi, Further synchronization in finite time analysis for time-varying delay fractional order memristive competitive neural networks with leakage delay, Neurocomputing 317 (2018) 110-126. [SCI, Elsevier Publication, IF: 3.241]. C.Sowmiya, R.Raja, J.Cao, Xiaodi Li, Discrete-time stochastic impulsive BAM neural network with multiple and leakage in the delay term: An exponential stability problem, Journal of The Franklin Institute 355(10) (2018) 4404-4435. [SCIE, Elsevier Publication, IF: 3.576].

Total Publications: 63, Cumulative Impact Factor: 172, Total Citations: 648, h-index: 15, i-10 index: 23.

Name	: Dr. B. Sundaravadivoo	- AD IT TO -
Designation	: Assistant Professor	
Address	: Department of Mathematics,	
	Alagappa University, Karaikudi	
Phone	: 04565 - 223500	1
E. Mail	: <u>sundaravadivoob@alagappauniversity.ac.in</u>	
Educational	Qualification	

Educational Qualification

Ph. D (Mathematics), Alagappa University, Karaikudi, India (2018)
M. Phil (Mathematics), Madurai Kamaraj University, Madurai, India. (2009)
M.Sc. (Mathematics), CPA College, Madurai Kamaraj University, Madurai, India (1998)
B. Sc (Mathematics), CPA College, Madurai Kamaraj University, Madurai, India (1996)
CSIR-NET (Mathematics), (2010)
PGDOR (Operations Research), Pondicherry University, Puducherry, India (2004)

Professional Experience

Assistant Professor, Department of Mathematics, Alagappa University, Grade -1. (May 2012 - 2016) Assistant Professor, Department of Mathematics, Alagappa University, Grade -2. (May 2016 to till date) Teaching Experience: 16 years

Research Experience: 1 Year

Area of Research

Differential Equations Fractional Differential equations Control Theory Mathematical Modelling Perturbation Theory

Honours and awards

University IV th Rank Holder in M.Sc Mathematics, Madurai Kamaraj University, Madurai, India.

Recent Publications

Controllability criteria of fractional differential dynamical systems withnon-instantaneous impulses, 10.1093/imamci/dnz025, (Impact Factor 1.00).

Total Publications: 7, Cumulative Impact factor: 5, Total citations: 11, H-index: 2, i-10 index: 1.

Name	: Dr. S. Amutha
Designation	: Asssistant Professor
Address	: Ramanujan Centre for Higher Mathematics
	Alagappa University,Karaikudi
Phone/Mobile	: 04565 - 223500; +91 9994613745
E. Mail : amut	has@alagappauniversity.ac.in, amutha.angappan@rediffmail.com

Educational Qualification

Ph. D (Mathematics) – Alagappa University, Karaikudi, India.(2011)

M. Phil (Mathematics) - Manonmaniam Sundaranar University, Tirunelveli, India.(2001)

M.Sc. (Mathematics) - Manonmaniam Sundaranar University, Tirunelveli, India. (1999)

B. Sc (Mathematics) - Sri Sarada College for Women, Tirunelveli, India, (1997).

Post Graduate Diploma in Computer Applications(P.G.D.C.A) - Manonmaniam Sundaranar University, Tirunelveli, India. (2000)

Professional Experience

Assistant Professor, RCHM, Grade – 2. (May 2016 to till date). Assistant Professor, RCHM, Grade – 1. (May 2012 – 2016). Teaching Experience: 10years Research Experience: 8 Years

Area of Research

Graph Theory, Domination Theory, Algorithmic Graph theory, Discrete Mathematics, Cryptography.

Honors and awards

Bright Educator Award from International Institute of Organized Research for the year **2017**. **Eminent MathematicianAward** from The International Multidisciplinary Research Foundation for the year **2019**.

Recent Publications

Sankara Gomathi. S, Amutha. S, Jayaprakasan. "Personify Educational Assistance Application for Special Children Using Deep Learning", International Journal of Innovative Technology and Exploring Engineering, Volume 8, Issue 10, August 2019, pp.1609-1614, ISSN 2278-3075. Sankara Gomathi. S , Amutha. S, Latha . A, Jayaprakasan. "Design of Power Optimization of Reversible Carry Select Adder using MPFA"", International Journal of Emerging Technology & Advanced Engineering Volume 8, Issue 10, October, 2018, pp.58-63, ISSN 2250-2459. K.Suriya Prabha and S.Amutha, "Split Domination number of a Congruent Dominating Graphs", International Journal of Pure and Applied Mathematics. Vol.119, No.12 , 2018, pp.14633-14642, ISSN: 1314-3395.

S.Amutha "Vertex odd and even mean labeling of a Regular graph", Journal of Advanced Research in Applied Sciences. Vol.5(3), pp.378-394, March 2018,

DOI:16.10089.JARAS.2018.V513.453459-2464.

K.Suriya Prabha and S.Amutha, "Edge Mean Labeling of a Regular Graphs", International Journal of Mathematics Trends and Technology. Vol. 53, Number 4, ISSN No. 2231-5373 (2018) 24-33, [Seventh Sense Research Group].

N.Sridharan, S.Amutha and A.Ramesh Babu, "Bounds for Lamda Domination Number Gamma Lamda of G of a Graph", Journal of Computational Mathematica. Vol.1(2), pp.78-90, November 2017.

Total Publications: 6, h-index: 3, i10 - index:1

Name	: Dr. R. JEYABALAN
Designation	: Assistant Professor
Address	: Department of Mathematics,
	Alagappa University, Karaikudi
Phone/Mobile	: 04565 - 227607 ; +91 9585242926
E. Mail	: jeyabalanr@alagappauniversity.ac.in, jeyram84@gmail.com

Educational Qualification

Ph. D. (Mathematics) – Bharathidasan University, Trichy, India. (2015)
M. Phil. (Mathematics) – Alagappa University, Karaikudi, India. (2010)
M. Sc. (Mathematics) –Dr. Zakir Hussain College, (Alagappa University), India. (2007)
B. Sc. (Mathematics) – Dr. Zakir Hussain College, (Madurai Kamaraj University), India. (2005)
Professional Experience

Assistant Professor, Department of Mathematics, Alagappa University.(2016 to Till date) Teaching Experience: 4 years

Research Experience: 4 Years

Area of Research

Magic labeling Graph Theory Fuzzy Topology Fuzzy Magic labeling Graph Theory

Recent Publications

Jeyabalan.R. IVF- almost generalized semi-precontinuous mappings, International Journal of Applied Mathematical Sciences ISSN 0973-0176 Volume 9, Number 1 (2016), pp. 99-111. G. Kumar and R. Jeyabalan, Completely generalized semi-precontinuous mapping in IVF- topological space, International Journal of Mathematics and Its Applications, Volume 6, Issue 2, 2018.

G. Kumar and R. Jeyabalan, IVF-almost generalized semi-preclosed mappings, International Journal of Mathematics Trends and Technology, Volume 55, Number 2, March 2018.

G. Kumar and R. Jeyabalan, Strongly Edge Multiplicative Graphs, (Accepted).

G. Kumar and R. Jeyabalan, On Vertex N-magic total labelling of graphs (Review)

R. Jeyabalan and G. Kumar, Strongly Vertex Multiplicative Graphs(Review)

Total Article Publications:10 h-index: 2, Total citations:5

Name	:Dr. M. Mullai
Designation	: Assistant Professor (DDE)
Address	: Department of Mathematics,
	Alagappa University, Karaikudi
Phone/Mobile	: 04565 - 227607 : +919159658866
E. Mail	: mullaim@alagappauniversity.ac.in, mullaialu25@gmail.com

Educational Qualification

Ph.D (Mathematics) – Alagappa University, Karaikudi, India. (2012) M.Phil (Mathematics) – Alagappa University, Karaikudi, India. (2002) M.Sc (Mathematics) – Alagappa University, Karaikudi, India. (2001). B.Sc (Mathematics) – Alagappa Govt. Arts College, Karaikudi, (Madurai Kamaraj University), India. (1999). P.G.D.C.A (Computer Applications) - Alagappa University, Karaikudi, India. (2001) **Professional Experience** Assistant Professor in Mathematics, Directorate of Distance Education, Alagappa University.(2013 – till date) Associate Professor and Head, Department of Science and Humanities, Sri Raaja Raajan College of Engineering and Technology, Amaravathipudur. (2011 to 2013). Assistant Professor, Department of Mathematics, St. Michael College of Engineering and Technology, Kalaiyarkoil. (2010 to 2011) Lecturer, Department of Mathematics, Veltech, Avadi, Chennai. (2005 to 2006). Guest Lecturer, Department of Mathematics, Alagappa Govt. Arts College, Karaikudi (2004 to 2005 and from 2006 to 2010). Teaching Experience: 15 years **Research Experience: 12 Years** Area of Research

Algebra & Fuzzy Algebra

Operations Research

Mathematical Modelling

Neutrosophic sets (Neutrosophic Inventory, Neutrosophic Graph theory, Neutrosophic Optimization, Neutrosophic Adhoc networks).

Honours and Awards

Best Article Award 2018 for the paper entitled Neutrosophic EOQ Model with price break by Neutrosophic Science International Association(NSIA), University of New Mexico, Maths and Science Department, 705, Gurley Ave, Gallup NM 87301, USA, 7 February 2019.

Recent Publications

M. Mullai & R. Surya., Neutrosophic EOQ Model with Price Break, Neutrosophic Sets and Systems, Vol. 19: 24-28(2018).

M.Mullai & K.Shanmuga Priya., Direct product of SP-Algebra, Journal of Global Research in Mathematical Archives, Vol.5(5), 90-94(2018).

M.Mullai & K.Shanmuga Priya., Polynomials on SP-Ring, International Journal of Computer Science, Volume 6, Issue 1, No 04, 2018, pp. 2293-2300.

M.Mullai., S.Broumi., et.al., A Neutrosophic Technique Based E_cient Routing Protocol For MANET Based On Its Energy And Distance, Vol. 24, 2019, pp. 61-

69.DOI:10.5281/zenodo.2593923.

M.Mullai & R.Surya., Neutrosophic Project Evaluation and Review Techniques, Neutrosophic Sets and Systems, Vol. 24, 2019, pp. 1-9. DOI: 10.5281/zenodo.2593903.

M. Mullai., S. Broumi., et.al., Single valued (2N+1) sided polygonal neutrosophic numbers and single valued (2N) sided polygonal neutrosophic numbers, Neutrosophic Sets and Systems, vol.25, 2019, pp. 54-65. DOI: 10.5281/zenodo.2631502.

Total Article Publications: 32, Total Citations: 14, h-index:01