

Dr. S. KARUPPUCHAMY

Professor and Head

Contact		
Address	Al Ka	epartment of Energy Science agappa University araikudi – 630 003 amil Nadu, INDIA
Employee Number	: 14	101
Contact Phone (Office)	: +9	91 4565 223380
Contact Phone (Mobile)	: +9	91 9488332891
Contact e-mail(s)		<u>chamy@gmail.com</u> chamy@alagappauniversity.ac.in

Academic Qualifications

Degree	Institution	Year	Branch	Class
D.Sc.	Periyar University, India	2020	Chemistry	Highly Commended
Ph.D.	Gifu University, Gifu, Japan	2002	Materials Engineering	Highly Commended
M.Sc.	Madurai Kamaraj University, India	1996	Chemistry	First Class
B.Sc.	Madurai Kamaraj University, India	1994	Chemistry	First Class

Teaching and Research Experiences: 25 Years

Position	Institution	Duration
Professor and Head	Alagappa University, Karaikudi, India	2016-Till date
Associate Professor and Head	Alagappa University, Karaikudi, India	2013-2016
Associate Professor	Kongu Engineering College Erode, India	2012-2013
Joint Senior Researcher	Kyushu Institute of Technology Kitakyushu, Japan & Universiti Putra Malaysia, Malaysia	2011-2012
Scientific Advisor	TSM Co. Ltd., Gumi, South Korea	2009-2011
Senior Scientist	Yokohama Rubber Co. Ltd. Iizuka, Japan	2006-2009
Research Associate	Asahi Kasei Corporation, Fuji, Japan	2002-2004
Monbukagakusho Research Fellow	Gifu University, Gifu, Japan	1998-2002

PDF/ Visiting Professor

Position	Institution	Duration
Post Doctoral Researcher	Henkel Kindai Lab, Kinki University, Iizuka, Japan	2004-2006
Visiting Professor	Kyushu Institute of Technology, Kitakyushu Japan	(1998-2012), (2015), (2016) (2018) & (2019)
Visiting Professor	SPD Laboratory, Inc. Japan	(1998-2012), (2015), (2016) (2018) & (2019)
Visiting Professor	Pusan National University, South Korea	(2008), (2009), (2010), (2011)

Visiting Professor	Henkel Corporation Germany	(2006), (2017)
Visiting Professor	The Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland	(2017)
Visiting Professor	Uppsala University, Sweden	(2017)
Visiting Professor	KTH Royal Institute of Technology, Sweden	(2017)
Visiting Professor	Mahidol University, Thailand	(2012), (2015), (2016), (2018) (2019)
Visiting Professor	National University of Singapore, Singapore	(2001), (2005) (2009)
Visiting Professor	University of Hawai, USA	(1999)
Visiting Professor	Universiti Teknologi Mara, Malaysia	(2000), (2001), (2002), (2005), (2011-2012), (2015) & (2016)
Visiting Professor	Universiti Putra Malaysia, Malaysia	(2000), (2001), (2002), (2005), (2011-2012), (2015) & (2016)

Acade	mic and Additional Responsit	oilities		
S.No	Position	University Pedies	Pe	riod
3.110	FOSITION	University Bodies	From	То
1.	Member – Vice Chancellor Officiating Committee	Alagappa University	2021	2022
2.	Member of Syndicate	Alagappa University	2020	2023
3.	Member – Finance Committee	Alagappa University	2022	2023
4.	Chairperson – School of Chemical Sciences	Alagappa University	2023	Till date
5.	Head – Department of Energy Science	Alagappa University	2013	Till date
6.	Senate Member	Alagappa University	2013	Till date
7.	Member–Internal Quality Assurance Cell (IQAC)	Alagappa University	2022	2023

8.	Member – DDE - Governing Council	Alagappa University	2022	2023
9.	Member – University Sports Board	Alagappa University	2022	2023
10.	Member–Centre for Internal Quality Assurance (DDE)	Alagappa University	2021	2023
11.	Chairman - Research Advisory Committee	Alagappa University	2021	2022
12.	Chairman - Standing Committee on Academic Affairs	Alagappa University	2021	2022
13.	Convener - Admission Committee	Alagappa University	2021	2023
14.	Member - Purchase Committee	Alagappa University	2021	2023
15.	Member - Administrative Staff - Promotion Committee	Alagappa University	2021	2023
16.	Member - Innovation Institution Council	Alagappa University	2021	2022
17.	Member - Disciplinary Committee	Alagappa University	2020	2023
18.	Board of Governing Body RUSA-2.0	Alagappa University	2020	2023
19.	Project Monitoring Unit - RUSA-2.0	Alagappa University	2020	Till date
20.	Co-ordinator-RUSA 1.0 Research and Innovation	Alagappa University	2017	Till date
21.	Co-ordinator-Incubation and Tech. Transfer Centre	Alagappa University	2019	2022
22.	Member - Standing Committee on Academic Affairs	Alagappa University	2017	Till date
23.	Co-ordinator - Alternative Energy Unit	Alagappa University	2016	Till date
24.	Co-ordinator - Environmental Awareness Club	Alagappa University	2016	2019
25.	Chief Superintendent - University Examinations	Alagappa University	2015	2016
26.	Chairman - Board of Studies	Department of Energy Science, Alagappa University	2013	Till date
27.	Member - Board of Studies	Chemistry DDE, Alagappa University	2022	2023

Areas of Research

- Nanotechnology
- Renewable Energy (Solar, Bioenergy)
- Energy Storage Materials
- Electrochemistry and Environmental Science

Patents Filed

- 1. N. Okada and S. Karuppuchamy, Japanese patent, Number; 2005-353289.
- 2. S. Karuppuchamy and M. Kurihara, Japanese patent, Number; 2005-005561.
- 3. S. Karuppuchamy, N. Suzuki, S. Ito, M. Schweinsberg, F. Wiechmann and C. Schroder, European Patent (2006): EP: 1893791.
- 4. S. Karuppuchamy, N. Suzuki, S. Ito, M. Schweinsberg, F. Wiechmann and C. Schroder, European Patent (2006): EP: 1893791A2.
- 5. S. Karuppuchamy, N. Suzuki, S. Ito, M. Schweinsberg, F. Wiechmann and C. Schroder, PCT Int. Appl. (2006), WO 2006136333.
- 6. S. Karuppuchamy, N. Suzuki, S. Ito, and M. Schweinsberg, F. Wiechmann and C. Schroder, PCT Int. Appl. (2006), WO 2006136334.
- 7. S. Karuppuchamy, N. Suzuki, S. Ito, and M. Schweinsberg, F. Wiechmann and C. Schroder, PCT Int. Appl. (2006), WO 2006136335 A1.
- 8. S. Karuppuchamy, N. Suzuki, S. Ito, M. Schweinsberg, H. Dolhaine, F. Wiechmann and C. Schroeder, US Patent (2008): US 20080210567.
- 9. H. Nishida Y. Andou, Y. Shirai, S. Karuppuchamy, A. Noor Ida, A. Hidayah and M.A. Hassan, Japanese Patent Application Number, JP2011-256880.
- 10. H. Nishida Y. Andou, Y. Shirai, S. Karuppuchamy, A. Noor Ida, A. Hidayah and M.A. Hassan, PCT Inter. Application, WO/2013/076960.
- 11. H. Nishida Y. Andou, Y. Shirai, S. Karuppuchamy, A. Noor Ida, A. Hidayah and M.A. Hassan, Malaysian Patent Application No: PI2014700501.

Research Supervision / Guidance

Program	of Study	Completed	Ongoing
	PDF	4	-
Research	Ph.D	7	4

	PG	58	20
Project	UG / Others	-	-

Publications

Inte	rnational	Ν	ational	Others
Journals	Conferences	Journals	Conferences	Books / Chapters / Monographs / Manuals
133	157	12	44	10

Cumulative Impact Factor (as per JCR)	: 408
h-index	: 35
i10 index	: 71
Total Citations	: 3800

Thesis Evaluation		
Thesis Evaluated	:	40
Viva-Voce Examiner	:	30

Funded Research Projects

S No	Agonov	Per	iod	Ducient Title	Budget
S.No	Agency	From	То	Project Title Sustainable Energy Technologies Advanced Nanomaterials for Sustainable Energy and Sensor Application	(Rs. In lakhs)
1	RUSA R&I	2017	2024	Sustainable Energy Technologies	150.00
2	RUSA 2.0	2019	2024	Sustainable Energy and Sensor	54.75
3	ICMR	2019	2022	Smart Lab on a Chip Biosensor Integrated with Protein Imprinted Polymer Electrodes for Rapid Detection of HIV Infection	27.30
4	DST	2019	2022	Molecularly Imprinted Polymer Based Biosensor for Tuberculosis Detection	17.40

5	DBT	2018	2021	Molecularly Imprinted Polymer Sensor Arrays for Mycotoxindetection in Plants	36.45
6	DST-SERI	2018	2021	Fabrication of Low Cost Inverted Planar Perovskite Solar Cell	51.46
7	DST- PURSE	2017	2020	Fabrication of Dye Sensitized Solar Cells	7.50
8	AURF	2017	2019	Synthesis of Nanostructured Metal oxides by Biological Route for Solar Cell Applications	3.00
9	DAE- BRNS	2016	2019	Development of Low Cost Hole Transporting Materials for Highly Efficient Perovskite solar cells	32.90
10	Himadri Chemicals	2015	2016	Development of Energy Storage Materials	0.66
11	DST- SERB	2013	2016	Development of Highly Efficient dye- sensitized solar cells	17.30
12	MOHE, Malaysia	2012	2017	Recovery of crude palm oil from EFB, USB, POME and DC	180.00

Distinctive Achievements / Awards

Awards

- 1. Outstanding Researcher Award 2022, Alagappa University, Karaikudi.
- 2. Award of Excellence 2021 for rendering exemplary service in energy science research by Ministry of Agriculture and Farmers Welfare, Government of India, Karaikal, Pondicherry during Dec. 24, 2021.
- 3. Tamil Nadu Senior Scientist Award for Chemical Sciences-2018, Govt. of Tamil Nadu.
- 4. Tamil Nadu Scientist Award (TANSA-2017) for Chemical Sciences, Govt. of Tamil Nadu.
- 5. Scientific Advisor (Honorary Position), SPD Laboratory, Japan Apr. 2014 to Till date.
- 6. Elected as Fellow Academy of Sciences, Chennai, 2018.
- 7. Appreciation award 2018, Alagappa University, Karaikudi.
- 8. Best Researcher Award 2017, EET CRS-17.
- 9. Alagappa Excellence Award for Research (2016-2017), Alagappa University, Karaikudi.
- 10. Best paper award received at the International Conference on Functional Materials, PSN College of Engineering and Technology, Tirunelveli during Sep. 7-10, 2016.
- 11. Best paper award received at the National Conference on Research advances in materials science and applications (RAMSA-2016), Anna University, Tiruchirappalli during Aug. 19-20, 2016.
- 12. Best paper award received at the National Conference on Recent Developments in Chemistry (RDC-15), Feb. 13-14, 2015, Aruppukottai, Tamil Nadu.
- 13. Seven Research Papers are listed as TOP 25 Hottest articles in the Elsevier Journals.
- 14. Visited for collaborative work, Kinki University, Kyushu Institute of Technology and SPD Laboratory, Japan during Oct. 2015.

- 15. Visited for collaborative work, Universiti Technology Mara and Universiti Putra Malaysia, Malaysia during Apr. 2015.
- 16. Best paper award received at the National Conference on Recent Developments in Chemistry (RDC-15) held at Aruppukottai, Tamil Nadu Feb. 13-14, 2015
- 17. Leading scientists of the World 2013 International Biographical Centre, Cambridge, UK.
- 18. Young Scientist Award 2013, Department of Science and Technology (DST), Government of India.
- 19. Asia Biomass Energy Researcher, New Energy Foundation, Government of Japan at Kyushu Institute of Tech. Japan during Sep. 2011 to Mar. 2012.
- 20. Scientific Adviser (Honorary Position), TSM Co. Ltd. Gumi, South Korea during Apr. 2009 to Mar. 2011.
- 21. Biography-2008, Marquis Who's Who in the World, USA.
- 22. Best paper award from the Japanese Society of Color Material, Japan during 2007.
- 23. Innovation award-2005 from Henkel Kindai Lab., Japan & Germany.
- 24. Postdoctoral Fellowship, Asahi Kasei Corporation, Japan during 2002-2004.
- 25. Travel Grant was awarded from Gifu University, Japan during Oct. 1999 to present a paper at the Joint Int. Electrochemical Society Meeting, Honolulu, USA.
- 26. Research Fellowship was awarded by Ministry of Education, Science and Culture. (MONBUSHO), Govt. of Japan, Gifu University, Japan during 1998-2002.

Honours/Achievements

- National Advisory Committee Member International Conference on Frontier Area in Chemical Technologies 2022 (FACTs 2022) held at Department of Industrial Chemistry, Alagappa University, Karaikudi during Feb. 16-18, 2023.
- 2. Selection Committee Member for the Assessment Committee CSIR–SRF Extension of Fellowship held at CSIR-CECRI, Karaikudi during Jan. 11, 2023.
- Scientific Advisory Committee Member Indo Poland Workshop on Functional Materials for Sensor and Energy Applications (FM-SEA) held at Department of Bioelectronic and Biosensor, Alagappa University, Karaikudi during Nov. 10-11, 2022.
- 4. Invited Reviewer for the papers submitted to 66th DAE Solid State Physics Symposium held at Birla Institute of Technology Mesra, Ranchi during Dec. 18-22, 2022.
- 5. Invited Reviewer for the papers submitted to 64th DAE Solid State Physics Symposium held at IIT Jodhpur during Dec. 18-22, 2019.
- Advisory Committee Member 3rd International Conference on Applied Nanoscience & Nanotechnology (ICANN–2019) held at Alagappa University, Karaikudi during Mar. 18-19, 2019.
- Chaired a Session in the 3rd International Conference on Applied Nanoscience & Nanotechnology (ICANN–2019) held at Alagappa University, Karaikudi during Mar. 18-19, 2019.
- 8. Advisory Committee Member International Conference on Sustainable Energy Resources and Materials (ISERMAT-2019) during Mar. 14-15, 2019.
- 9. Chaired a Session in the Second International Conference ISERMAT 2019 held at SSN College of Engineering, OMR, Kalavakkam, Chennai during Mar. 14-15, 2019.

- 10. Advisory Committee Member International Conference on Sustainable Energy Technologies held at Bharathidasan University, Tiruchirappalli during Jun. 27-28, 2018.
- 11. Served as a Member of Assessment Committee for UGC-JRF Fellow up gradation held at CECRI, Karaikudi during Mar. 5, 2018.
- 12. Chaired a Session in the International Conference on Advanced Nanomaterials, Alagappa University, Karaikudi during Feb. 26-27, 2018.
- 13. Invited Reviewer for the papers submitted to 62nd DAE Solid State Physics Symposium sponsored by BRNS, Mumbai, Govt. of India held at Mumbai during Dec. 26-30, 2017.
- 14. Chaired a Session in the International Conference on Frontier Areas in Chemical Technologies (FACTS-2017) held at Karaikudi during Jul. 6-8, 2017.
- 15. Advisory Committee Member International Conference on Recent Developments in Arts, Science, Agriculture and Environment held at Kualalumpur, Malaysia during May 5-8, 2017.
- 16. Advisory Committee Member National Conference on Futuristic Materials (NCFM-2017) during Mar. 27-28, 2017.
- 17. Advisory Committee Member Workshop on Biosensors in Agricultural, Environmental and Medical Sciences during Mar. 13-14, 2017.
- 18. Chaired a session at the National Seminar on Advanced Materials Research (AMR-2017) held at Alagappa University during January 19, 2017.
- Served as one of the Judges to select Best paper presentation in the Palm Oil Milling Technology Colloquium 2016 (POMTeC'16) held at Hotel UiTM, Shah Alam, Malaysia during Mar. 30-31, 2016.
- 20. Chaired a session in the International Conference on Frontier Areas in Chemical Technologies (FACTS-2016) held at Karaikudi, India during Mar. 21-23, 2016.
- 21. Chairperson in the 1st International Conference on Energy, Environment and Engineering (ICEEE-2016) held at CIT, Coimbatore during Feb. 29-Mar. 2, 2016.
- 22. Served as External Examiner for M. Phil and Ph.D. candidates of CSIR-CECRI, Bharathidasan University, Kalasalingam University, Gandhigram Rural Institute, Vellore Institute of Technology, MS University, Periyar University and Bharathiar University, India.
- 23. Doctoral Committee member for Research scholars of Thiagarajar College of Engineering, Anna University, Chennai, India.
- 24. Doctoral Committee member for Research scholars of PSN College of Engineering, affiliated to Anna University, Chennai, India.
- 25. Chaired a Session in the International Conference on Sustainable Energy Resources and Materials (SERM-2015), Jan. 8-9, 2015.
- 26. International Advisory Committee Member International Conference on Sustainable Energy Resources and Materials (SERM-2015), Jan. 8-9, 2015.
- 27. International Scientific Committee Member, International conference on Energy 2015 (ICOE-2015), Colombo, Sri Lanka.
- 28. National Advisory Board Member International Conference on Nanostructured Materials and Nanocomposites (ICNM -2015) Mathura, UP India.
- 29. Reviewer for more than 35 journals from various scientific publishers such as Elsevier, American Chemical Society, Springer, Taylor and Francis, ECS USA, Hindawi and Cambridge Journals.

- 30. Served as Inspection Committee member to inspect the DDE centres of Annamalai University during Dec. 1-30, 2015.
- 31. International Technical Committee Member, International Conference on Nanomaterials and Nanotechnology (NANO-15) Nano-15, Dec. 7-10, 2015.
- 32. Served as one of the Judges for selecting best paper at the CRSI Symposium in Chemistry held at NIT Trichy, Jul. 23-25, 2015.
- 33. Served as one of the Judges for selecting best paper at the ISERMAT-2015 held at Chennai during Jan. 8-9, 2015.
- 34. Chaired a Session in the International Conference on Sustainable Energy Resources and Materials (ISERMAT-2015) held at Chennai, Tamil Nadu, Jan. 8-9, 2015.
- 35. International Advisory Committee Member-International Conference on Sustainable Energy Resources and Materials (ISERMAT-2015) held at Chennai, Tamil Nadu, Jan. 8-9, 2015.
- 36. Chaired a Session in the National Conference on Materials for Energy Storage and Conversion held at Tirunelveli, Tamil Nadu, Sep. 4-5, 2014.
- 37. Chaired a Session in the International Conference on Fracture 2014 held at Kottayam, India during Aug. 9 -11, 2014.
- 38. National Advisory Committee Member ICNM 2014.
- 39. National Advisory Committee Member International Conference on Fracture 2014.
- 40. Editorial Board Member Advanced Nanoscience and Technology: An International Journal (ANTJ).
- 41. Chaired a session in the International Workshop on Adv. Mater. (IWAM-2014) held at Alagappa University during Mar. 20-21, 2014.
- 42. National Advisory Committee Member National Conference on Recent Adv. in Nanomater. for Sensor Applications during Mar. 6-7, 2014.
- 43. External Expert for judging the best poster and oral presentation during National Science Day held at CSIR-CECRI, Karaikudi during Feb. 28, 2014.
- 44. Served as Member of squad team for April 2013 Alagappa University Examinations.
- 45. Served as a Member of the panel of Judges for final year students Project presentation at the Dept. of Process and Food Engineering held at Faculty of Eng. UPM, Malaysia during Jun. 26, 2012.
- 46. Organizing committee member of the CSIR & BRNS Sponsored Conference on Recent Applications of Nanomaterials in Chemistry and Environmental Research, Jul. 20-21, 2012, India.
- 47. Chaired a Session in the First International Conference on Nanostructured materials and Nanocomposites held at Kottayam, India during Apr. 6-8, 2009.

Events Organized in Leading Roles

Number of Seminars / Conferences / Workshops / Events organized: 25

Position	Programme	Duration	Institution
Convener	One day Special Lecture on Energy Storage Materials	28.07.2023	Alagappa University

			Vidyagiri
Convener	One day Indo-Japan Seminar on Renewable Energy: Opportunities and	26.09.2022	College of arts and
	Challenges		science
Convener	One day Special Lecture: Research on Solar Technology in Japan	23.09.2022	Alagappa University
Convener	National Seminar on Renewable Energy Science and Technology (NSREST-2022)	22.03.2022	Alagappa University
Convener	National Energy Conservation Day - 2021	22.03.2022	Alagappa University
Convener	Workshop on Development of Low Cost Solar cells for Rural and Tribal Applications	15.03.2022	Alagappa University
Common	Second International Virtual	28.09.2020	
Convener	Conference on Renewable Energy and Technology (ICREST-2020)	to 29.09.2020	Alagappa University
Convener	Webinar on Energy Conversion and Storage Devices	27.05.2020	Alagappa University
Convener	Webinar on New Generation Solar Cells	18.05.2020	Alagappa University
Co-	National Workshop on Advanced	04.03.2020	
Convener	Nanomaterials for Sustainable Energy and Sensor Applications	to 06.03.2020	Alagappa University
Convener	One day Seminar on Energy Conservation	13.12.2019	Alagappa University
Convener	One day Special Lecture on Thin Film Technology and Organic Solar Cells	08.07.2019	Alagappa University
Convener	One day Special Lecture on Dye- Sensitized Solar Cells and its Future Perspectives	12.02.2019	Alagappa University
Convener	One day Special Lecture on Development of Low Cost DSSC	11.02.2019	Alagappa University
Convener	One day Seminar on Energy Conservation	13.12.2018	Alagappa University
Convener	Special Lecture on Waste to Energy	04.12.2018	Alagappa University
Convener	One day Special Lecture on Thin Film Technology in Solar Cells	06.07.2018	Alagappa University
Convener	One day Special Lecture on Development of Electrode Materials for Low Cost Solar Cells	05.07.2018	Alagappa University
Convener	One day Special Lecture on Bioenergy, Focusing on the optimization of the Biogas Process and Environmental Analysis	06.03.2018	Alagappa University
Convener	International Conference on Renewable Energy and Technology (ICREST-2017)	10.03.2017 to 11.03.2017	Alagappa University
		11.03.2017	

Convener	One day Seminar on Energy Conservation	10.12.2016	Alagappa University
Convener	One day Seminar on Energy Conservation	14.12.2015	Alagappa University

Events Participated

Number of Conferences / Seminars / Workshops: 201

Overseas Exposure / Visits

- 1. Kyushu Institute of Technology, Kitakyushu, Japan
- 2. SPD Laboratory, Inc.
- 3. Pusan National University, South korea
- 4. Henkel Corporation, Gremany
- 5. The Ecole polytechnique federale de Lausanne (EPFL), Switzerland
- 6. Uppsala University, Sweden
- 7. KTH Royal Institute of Technology, Sweden
- 8. Mahidol University, Thailand
- 9. National University of Singapore, Singapore
- 10. University of Hawai, USA
- 11. Universiti Teknologi Mara, Malaysia
- 12. Universiti Putra Malaysia, Malaysia

Membership

Professional Bodies

- 1. Life Member- Chemical Research Society of India (CRSI)
- 2. Life Active Member-Society for Advancement of Electrochemical Science and Technology
- 3. Member- International Society of Electrochemistry (ISE)
- 4. Member- Asian Federation of Biotechnology (AFOB)
- 5. Member-American Nano Society, USA

Collaborations

- 1. Kyushu Institute of Technology, Japan
- 2. Kinki University, Japan
- 3. Toyota Technological Institute, Japan
- 4. Polytechnic University of Aguascalientes, Mexico

- 5. Universiti Putra Malaysia, Malaysia
- 6. Universiti Teknologi Mara, Malaysia
- 7. EPFL, Lausanne, Switzerland
- 8. Mahidol University, Thailand

MoU

- 1. Polytechnic University of Aguascalientes, Mexico
- 2. Kinki University, Japan
- 3. SPD Laboratory Kinki University, Japan
- 4. Himadri Chemicals, Kolkata
- 5. Kyushu Institute of Technology, Japan

Academic Bodies in Other Institutes/ Universities

Year / Period	Name of the BoS / Administrative Committee / Academic Committee	Role
2023	Board of Studies, M.S. University.	External Expert
2022	Faculty Promotion Scrutiny and Selection Committee, Periyar University.	Member
2020	Board of Studies, Periyar University, Salem.	External Expert
2020	Question Paper Setting Board	Chairman

Ph.D. Thesis Guided

- 1. No. of PhD Thesis evaluated : 7
- 2. No. of PhD Public Viva Voce Examination conducted : 7

S. No	Name of the Scholar	Title of the Thesis	Year of Completion
1.	R. Dhilip kumar	Eco Friendly Synthesis of Nanostructured Materials	2017
	-	for Energy Applications	
		Investigations of Optical, Structural and	
2.	M. Thamima	Photocatalytic Properties of Nanostructured Oxide	2018
		Semiconductors	
3.	J. Maragatha	Development of Photocatalytic Nanomaterials for	2018
5.	J. Malagalla	Environmental application ns	2018
4.	C. Draundha	Studies on the Preparation of Core Shell Structured	2019
· ·	C. Brundha	Nano materials for Highly Efficient Dye Sensitized	2018

		Solar cells	
5.	K. Ramachandran	Preparation of Inorganic Hole Transporting Materials for Highly Efficient Perovskite Solar cells	2021
6.	M. Selvamurugan	Novel Synthetic Routes to Oxide Nanomaterials for Energy Storage Applications	2021
7.	M. Nagalakshmi	Synthesis of Titanium Dioxide Nanomaterials for Photocatalytic and Antibacterial Applications	2021

List of Research Articles / Recent Publications

S. No	Authors/Title of the paper/Journal	Impact Factor
1.	A vacuum pressure sensor based on graphene/ZnO nanorod Schottky junction Sakthivel, P., K. Ramachandran, M. Malarvizhi, S. Karuppuchamy , and P. Manivel, Carbon Letters (2023): 1-11.	4.5
2.	Fabrication of Planar Perovskite Solar Cells Using Ternary Metal Oxide Nanocomposite as Hole-Transporting Material, KP Muthukumaran, V Arjun, A Nithya, Sadhasivam Thangarasu, Tae Hwan Oh, S Karuppuchamy , <i>Energies</i> 2023, <i>16</i> (9), 3696.	3.2
3.	Investigation on the effect of neodymium ion doping in TiO ₂ on the photovoltaic performance of dye-sensitized solar cells, G. Anantharaj, J. Anandha Raj, S. Karuppuchamy , S. Vijayaraghavan, <i>Materials chemistry and physics</i> , 2022, 292 126785.	4.7
4.	Fabrication of Efficient and Stable Planar Perovskite Solar Cell using Copper Oxide as Hole Transport Material, V Arjun, K.P Muthukumaran, K Ramachandran, A Nithya and S. Karuppuchamy , <i>Journal of Alloys and Compounds</i> , 2022, 923 (25) 166285.	6.2
5.	H ₂ O ₂ Assisted Hydrothermal and Microwave Synthesis of CuO–NiO Hybrid MWCNT Composite Electrode Materials for Supercapacitor Applications, Sannasi Veeman and S. Karuppuchamy , <i>Ceramics International</i> , 2022, 48 (18), 26806-26817.	5.2
6.	Biosynthesized TiO ₂ nanoparticles an efficient biogenic material for photocatalytic and antibacterial applications, M. Nagalakshmi, C. Jeganathan, J. Anandharaj, A. Nithya M. JothiBasu and S. Karuppuchamy , <i>Energy & Environment</i> , 33 (2), 377-398, 2021.	4.2
7.	Microwave Synthesis of Sn-doped NiO/CNT Composites: The Effect of Sn Incorporation on Their Electrochemical Properties, Sannasi Veeman, M. Maheswari, K. Ramachandran and S. Karuppuchamy , <i>Journal of Electronic</i> <i>Materials</i> , 50 (2021) 6102-6113.	2.04
8.	High performing Zn-embedded Ni ₉ S ₈ nanosphere electrodes for Pseudo- supercapacitors, R. Dhilipkumar, C. Jeganathan, K. L. Vincent Joseph, C. Karthikeyan and S. Karuppuchamy , <i>Journal of Materials Science: Materials in Electronics (2021)</i> .	2.8
9.	Nanostructured bilayer CuSCN@ CuI thin films as efficient inorganic hole transport material for inverted perovskite solar cells, K. Ramachandran, C. Jeganathan and S. Karuppuchamy, <i>Ceramics International</i> , 2021, 47(13),	5.2

	17883-17894.	
10.	Electrodeposition of Nanostructured Bilayer CuI@ CuSCN as Hole Transport Material for Highly Efficient Inverted Perovskite Solar Cells, K. Ramachandran, C. Jeganathan and S. Karuppuchamy , <i>Journal of Alloys and Compounds</i> , 2021, 881, 160530.	6.2
11.	Surfactant assisted electrochemical growth of ultra-thin CuSCN nanowires for inverted perovskite solar cell applications, K. Ramachandran, C. Jeganathan and S. Karuppuchamy , <i>Organic Electronics</i> , 2021, 95, 106214.	3.8
12.	One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport- ability in inverted planar perovskite solar cells, K. Ramachandran, C. Jeganathan and S. Karuppuchamy , <i>Nanotechnology</i> , 2021, 32, 325402.	3.5
13.	High performing air stable inverted perovskite solar cells using nanostructured CuSCN thin film as hole transport material, K. Ramachandran, C. Jeganathan, R. Prabhakaran, M. Wakisaka, G. Paruthimal Kalaignan and S. Karuppuchamy , <i>Solar Energy Materials and Solar Cells</i> , 2021, 231, 111116.	7.3
14.	Study of the Thermal Stability and Ionic Conductivity of Polystyrene- Co- Acrylonitrile Based Composite Solid Polymer Electrolytes Incorporated with different Lithium Salts, S. V. Ganesan, M. Selvamurugan, M. Thamima, S. Karuppuchamy, K. K. Mothilal, <i>Shanlax International Journal of Arts, Science</i> <i>and Humanities</i> , vol. 8, no. S1, 2021, pp. 15–20.	1.54
15.	H ₂ O ₂ -assisted microwave synthesis of NiO/CNT nanocomposite material for supercapacitor applications, V. Sannasi K. Uma maheswari, C. Karthikeyan and S. Karuppuchamy , <i>Ionics 2020, 26, 4067-4079</i> .	2.9
16.	Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications, C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karuppuchamy , <i>Journal of Alloys and Compounds 2020</i> , <i>9</i> ,154281.	6.2
17.	One pot and large scale synthesis of nanostructured metal sulfides: synergetic effect on supercapacitor performance, C. Karthikeyan, R. Dhilip Kumar, J. Anandha Raj and S. Karuppuchamy , <i>Energy and Environment</i> , 2020, 1-18.	4.2
18.	Characterization of Delignified Oil Palm Decanter Cake (OPDC) for Polymer Composite Development, Muhammad Aqif Adam, Alawi Sulaiman, Azhari Samsu Baharuddin, Mohd Noriznan Mokhtar, S. Karuppuchamy , Meisam Tabatabaei, International Journal on Advanced Science Engineering Information Technology, 2019, 9(2), 384-389.	0.72
19.	Preparation of MnCo ₂ O ₄ by Microwave Assisted Method for Supercapacitor Applications, V. Sannasi and S. Karuppuchamy , <i>AIP Conference Proceedings</i> , 2161, 2019, 020040.	0.41
20.	Preparation of p-Type CuSCN Thin Film by Electrochemical Method for Inverted Planar Perovskite Solar Cells, K. Ramachandran, Vibha Saxena, G. Paruthimal Kalaignan and S. Karuppuchamy , <i>AIP Conference Proceedings</i> , 2161, 2019, 020056.	0.41
21.	Development of TiO ₂ for Low Cost Solar Cells, S. Karuppuchamy , C. Brundha, K. Ramachandran and C. Karthikeyan, <i>AIP Conference Proceedings</i> , 2019, 2161, 020046.	0.41
22.	Dye Removal Efficiency of Perovskite Structured CaTiO ₃ Nanospheres Prepared by Microwave Assisted Method, C. Karthikeyan, M. Thamima and S. Karuppuchamy, <i>Materials Today: Proceedings</i> , 2019, DOI:	_

	10.1016/j.matpr.2019.05.421.	
	High Efficiency Dye-sensitized Solar Cells with Voc-Jsc Trade off Eradication by	
23.	Interfacial Engineering of Photoanode/electrolyte Interface, G. Anantharaj, S.	3.9
	Karuppuchamy and V. Saranyan, RSC Advances, 2019, 9, 40292.	
24.	Structural and Photocatalytic Property of CaTiO ₃ Nanosphere, C. Karthikeyan, M.	0.47
	Thamima and S. Karuppuchamy, Material Science Forum, 2019, 979, 169.174.	0.47
25	Synthesis of TiO ₂ Nanoparticles Using Acinetobacterbaumanii for Photocatalytic	
25.	Application, M. Nagalakshmi, N. Anusuya and S. Karuppuchamy, Material	0.47
	Science Forum, 2019, 979.	
26.	Electrodeposition of CuI Thin Film for Perovskite Solar Cells, I. Karuppusamy,	
20.	K. Ramachandran and S. Karuppuchamy, Material Science Forums, 2019, 979,	0.47
	180-184.	
27.	Inorganic based hole transport materials for perovskite solar cells, S.	2.0
27.	Karuppuchamy, G Murugadoss, K Ramachandran, Vibha Saxena, R There exists I.M. (2012) 8847 8853	2.8
	Thangamuthu, J Mater Sci: Mater Electron. 29 (2018) 8847-8853.	
28.	Physicochemical Characterization of Nanostructured Lithium Titanate Prepared by Hydrothermal Method, M. Selvamurugan and S Karuppuchamy , <i>Mat. Focus</i> ,	2.3
	in press, (2018).	2.3
20	Technologies for Biodiesel Production: A Review, C. Karthikeyan and S.	
29.	Karuppuchamy, Mat. Focus, 7,147-155, 2018.	2.3
	Inorganic based hole transport materials for perovskite solar cells, S	
30.	Karuppuchamy, G Murugadoss, K Ramachandran, Vibha Saxena, R	2.8
	Thangamuthu, J Mater Sci: Mater Electron. 29 (2018) 8847–8853.	
	Microwave Synthesis of C-doped Ti ₄ O ₇ for Photocatalytic Applications, J.	
31.	Maragatha and S. Karuppuchamy, Adv. Sci. Eng. Med. 10(11), 1085-1088,	0.6
	2018.	
	Photo-assisted advanced oxidation processes for Rhodamine B degradation using	
32.	ZnO-Ag nanocomposite materials, K. Rokesh, S. Chandra Mohan, S.	7.7
	Karuppuchamy and K. Jothivenkatachalam, <i>Journal of Environmental Chemical</i>	
	Engineering 6(3), 3610-3620, 2018.	
	The Effects of MAPP and OPDC on Physical and Mechanical Properties of OPDC-RPC, M.A. Adam, A. Sulaiman, N. F.A.A. Pahmy M.N. Mokhtar, M.	
33.	Tabatabaei, and S. Karuppuchamy , <i>Journal of Mechanical Engineering Vol SI 2</i>	1.7
	(2), 83-97, 2017.	
	Transesterification of <i>Madhucalongifolia</i> Derived Oil to Biodiesel Using Mg–Al	
34.	Hydrotalcite as Heterogeneous Solid Base Catalyst, C. Karthikeyan and S	2.3
	Karuppuchamy, Materials Focus. 6 (2017) 101-106.	
	Synthesis of TiO ₂ Nanofiber for Photocatalytic and Antibacterial Applications, M.	
35.	Nagalakshmi, C. Karthikeyan, N. Anusuya, C. Brundha, M. JothiBasu and S.	2.8
	Karuppuchamy, J Mater Sci: Mater Electron. 2017.	
26	Development of Nanostructured TiO ₂ /CaCO ₃ Core Shell Materials for Efficient	
36.	Dye-sensitized Solar Cells, C. Brundha, C. Karthikeyan and S. Karuppuchamy,	0.78
	Journal of Physical Sciences, (2017) 76-81.	
37.	Synthesis and Characterization of Lithium Titanate (LTO) Nanocomposites via	
57.	Solution Growth Route for Li-Ion Batteries, M. Selvamurugan, R. Dhilip Kumar,	_
	C. Karthikeyan and S. Karuppuchamy , <i>Kong. Res. J.</i> 4(3) (2017) 1-6.	
38.	Preparation of one dimensional Titanium dioxide nanowires using electrospinning process for dye-sensidized solar cells, C. Brundha, R. Govindaraj, N. Santhosh,	2.8
1	process for uye-sensitized solar cens, C. Druhuna, K. Govinuaraj, N. Sahulosh,	

	M. Senthil Pandian, P. Ramasamy, S. Karuppuchamy, J Mater Sci: Mater Electron., 28 (2017) 11509–11514.	
39.	J. Maragatha, C. Rani, S. Rajendran, and S. Karuppuchamy , Microwave synthesis of Nitrogen doped Ti ₄ O ₇ for photocatalytic applications, Physica E: Low-dimensional Systems and <i>Nanostructures</i> , <i>93</i> , (2017), 78-82.	3.3
40.	Microwave assisted synthesis of perovskite structured BaTiO ₃ nanospheres via peroxo route for photocatalytic applications, M. Thamima and Y. Andou and S. Karuppuchamy, <i>Ceram. Int. 43 (2017) 556-563.</i>	5.2
41.	Microwave synthesis of metal doped TiO ₂ for photocatalytic applications, J. Maragatha S. Rajendran T. Endo S. Karuppuchamy, J Mater Sci: Mater Electron (2017) 28:5281–5287.	2.8
42.	Synthesis and characterization of Lithium titanate (Li ₄ Ti ₅ O ₁₂) Nanopowder for Li-ion-batteries, M. Selvamurugan and S. Karuppuchamy , <i>J. Mater.Sci. Mater. Elect.</i> 27 (2016) 9699-9703.	2.8
43.	Synthesis and Characterization of visible light-responsive Carbon Doped Ti ₄ O ₇ Photocatalyst, J. Maragatha and S. Karuppuchamy , <i>J. Mater.Sci. Mater. Elect.</i> 29 (2018) 17826-17833.	2.8
44.	Degradation of Alizarin Red S Dye Using Ni doped WO ₃ Photocatalyst, K. Santhi, C. Rani and S. Karuppuchamy, J. Mater.Sci. Mater. Elect. 27 (2016) 5033–5038.	2.8
45.	Synthesis, characterization and photocatalytic activity of nanostructured copper doped WO ₃ , K. Santhi, J. Maragatha, C. Rani and S. Karuppuchamy , <i>Materials Focus</i> . <i>5</i> (2016) 398-403.	2.3
46.	Eco-friendly superheated steam treated oil palm empty fruit bunch fibers and their application in polymer composites, S. Karuppuchamy , Y. Andou, S. S. Jang, H. Nishida, M. A. Hassan and Y. Shirai, <i>Adv. Sci. Eng. Med.</i> 8 (2016)131-134.	0.6
47.	Microwave-assisted synthesis of Zn-WO ₃ and ZnWO ₄ Nanopowder for Pseudocapacitor applications, R. Dhilip Kumar and S. Karuppuchamy, J. <i>Phys.Chem. Solid.</i> 92 (2016) 94-99.	4
48.	Synthesis, characterization and photocatalytic properties of rod-shaped titanium dioxide, M. Thamima and S. Karuppuchamy, J. Mater.Sci. Mater. Elect. 27 (2016) 458-465.	2.8
49.	Synthesis of nanostructured Cu-WO ₃ and CuWO ₄ for supercapacitor applications, R. Dhilip Kumar, Y. Andou, M. Sathish and S. Karuppuchamy , <i>J. Mater.Sci.</i> <i>Mater. Elect.</i> , 27 (2016) 2926-2932.	2.8
50.	Synthesis and Characterization of a Novel SnO/SnO ₂ Hybrid Photocatalyst, K. Santhi, C. Rani and S. Karuppuchamy , <i>Journal of Alloys and Compounds</i> , 662 (2016) 102-107.	6.2
51.	Microwave mediated synthesis of nanostructured Co-WO ₃ and CoWO ₄ for supercapacitor applications, R. Dhilip Kumar, M. Sathish and S. Karuppuchamy, J. Alloys. Compd. 674 (2016) 384-391.	6.2
52.	Synthesis and characterization of nanostructured Ni-WO ₃ and NiWO ₄ for supercapacitor applications, R. Dhilip Kumar, Y. Andou and S. Karuppuchamy , <i>J. Alloy. Compd. in 654 (2016) 349-356.</i>	6.2
53.	Eco-friendly synthesis of core-shell structured (TiO ₂ /Li ₂ CO ₃) nanomaterials for low cost dye-sensitized solar cells, S. Karuppuchamy and C. Brundha, <i>Ecotoxicology and Environmental Safety</i> , 134 (2016) 332-335.	4.8
54.	Synthesis of nanoporous Zn-WO ₃ by microwave irradiation method for	2.8

	photocatalytic applications, K. Santhi, C. Rani, R. Dhilip Kumar and S.	
55.	Karuppuchamy, J. Mater. Sci. Mater. Elect. 26 (2015) 10068-10074.The Presence of Residual Oil in Relation to Solid Particles Distribution in PalmOil Mill Effluent (POME), W.S. Shazzelyn, A.W. Sharifudin, A. Sulaiman, N.Mokhtar, A.S. Baharuddin, M. Tabatabaei, Z. Busu and S. Karuppuchamy,Bioresources 10 (2015) 7591-7603.	1.74
56.	Thermo-mechanical properties of coconut shell powder reinforced plastic composites, SS. Karuppuchamy , <i>Int. J. Chem. Tech. Res.</i> 8 (2015) 852-857.	0.2
57.	Synthesis and Characterization of Visible Light Active Titanium Dioxide Nanomaterials for Photocatalytic Applications, S. Karuppuchamy and R. Dhilip Kumar, <i>Int. J. Chem. Tech. Res.</i> 8 (2015) 278-283.	0.2
58.	Facile Synthesis of Honeycomb Structured SnO/SnO ₂ Nanocomposites by Microwave Irradiation Method, R. Dhilip Kumar and S. Karuppuchamy, J. Mater. Sci. Mater. Elect.26 (2015)6439-6443.	2.8
59.	Thermo-mechanical properties of Palm Fiber Plastic (PFP) Composites, S. Karuppuchamy, Y. Andou, A.S. Baharuddin, A. Sulaiman, M. A. Hassan, H. Nishida and Y. Shirai, <i>Adv. Sci. Eng. Med.</i> 7 (2015) 844-848.	0.6
60.	Investigations on the antioxidant activity of <i>Kalopanaxseptemlobus</i> root, K.S. Seo, S. Karuppuchamy , J.K. Park and C.E. Lee, Minerva <i>Biotechnologica</i> , 27 (2015) 179-189.	_
61.	Synthesis and Characterization of Nanostructured Zn-WO ₃ and ZnWO ₄ by simple solution growth technique, R. Dhilip Kumar and S. Karuppuchamy , <i>J. Mater. Sci. Mater. Elect.</i> 26 (2015) 3256-3261.	2.8
62.	Superheated steam treated oil palm frond fiber reinforced green composites, S. Karuppuchamy, Y. Andou, H. Nishida, M. A. Hassan and Y. Shirai, <i>Adv. Sci.</i> <i>Eng. Med.</i> 7 (2015) 112-119.	0.6
63.	Fabrication of Core-shell structured TiO ₂ /MgO Electrodes for Dye-Sensitized Solar Cells, S. Karuppuchamy and C. Brundha, <i>Applied Mechanics and Materials</i> , 787 (2015) 3-7.	0.3
64.	Biosynthesis of titanium dioxide and zinc oxide nanoparticles from natural sources; A review, Thamima and S. Karuppuchamy, Adv. Sci. Eng. Med. 7 (2015) 18-25.	0.6
65.	Synthesis of Nanocrystalline Titanium Dioxide for Photodegradation Treatment of Remazol Brown Dye, K. Santhi, P. Manikandan, C. Rani and S. Karuppuchamy, <i>Applied Nanoscience</i> , 5 (2015) 373-378.	4.1
66.	Synthesis and characterization of nanostructured copper tungstate (CuWO ₄) for supercapacitor applications, R. Dhilip Kumar and S. Karuppuchamy , <i>Ceramics Inter.</i> 40 (2014)12397-12402.	5.2
67.	Visible light-induced photocatalytic activity of SiO ₂ /carbon cluster composite materials, H. Matsui, K. Santhi, S. Sugiyama, M. Yoshihara and S. Karuppuchamy, <i>Ceramics Inter.</i> 40, (2014) 2169-2172.	5.2
68.	Modification of Oil Palm Mesocarp Fiber Characteristics Using Superheated Steam Treatment, Noor Ida Amalina Ahamad Nordin, H. Ariffin, Y. Andou, M. A. Hassan, Y. Shirai, H. Nishida, W. Z. Wan Yunus, N. A. Ibrahim and S. Karuppuchamy, <i>Molecules</i> (2013) 18 (8), 9132-9146.	4.9
69.	Preparation of Nanostructured TiO ₂ for Flexible Dye-sensitized Solar Cell Applications, S. Karuppuchamy , Y. Andou and T. Endo, <i>Applied Nanosci.</i> , <i>3</i> (2013) 291-293.	4.1

	Visible light-sensitive Al ₂ O ₃ /carbon clusters composite materials H. Matsui, H.	
70.	Miyazaki, A. Fujinami, S. Ito, S. Karuppuchamy and M. Yoshihara, Applied	4.1
	Nanoscience, 3 (2013) 225-228.	
F 1	The effect of surface area on the photo-catalytic behavior of ZrO ₂ /carbon clusters	
71.	composite materials, H. Matsui, N. Ohkura, S. Karuppuchamy, M.A. Hassan	5.2
	and M. Yoshihara, Ceramics Inter. 39 (2013) 5827-5831.	
72	Effect of sodium sulphate salinity for production of docosahexaenoic acid (DHA)	
72.	by Thraustochytrids, R. Prabu, S. Karuppuchamy and S. Raksha, Asian	0.5
	Biomedicine, 6 (2012) 693-701.	
72	Photo-electronic behaviors of Cu ₂ O- and/or CeO ₂ -loaded TiO ₂ /carbon clusters	
73.	composite materials H. Matsui, Y. Saitou, S. Karuppuchamy, M.A. Hassan, and	6.2
	M. Yoshihara, J. Alloys Compd., 538 (2012) 177-182.	
74.	Visible light-sensitive MnO ₂ and CeO ₂ -loaded ZrO ₂ /Carbon cluster/Pt	
/4.	nanocomposite materials H. Matsui, M. Ikegami, S. Karuppuchamy, M.A.	3.1
	Hassan, and M. Yoshihara, <i>Superlattices and Microstruct.51</i> (2012) 239-246.	
75.	The photoelectronic behaviors of MoO ₃ -loaded ZrO ₂ /Carbon clusters composite	4.1
101	materials, H. Matsui, A. Ishiko, S. Karuppuchamy , M.A. Hassan and M. Vashihara, Appl. Nanosci. 2 (2012) 25–20	4.1
	Yoshihara, <i>Appl. Nanosci.</i> 2 (2012) 25-30. Visible light induced electron transfer behavior of a novel CeO ₂ -loaded	
-	$HfO_2/Carbon cluster composite materials, H. Matsui, M. Nishii, S.$	
76.	Karuppuchamy , J.M. Jeong, M.A. Hassan and M. Yoshihara, J. Alloys Compd.,	6.2
	513 (2012) 184-188.	
	Efficient photocatalytic activity of MnO ₂ -loaded ZrO ₂ /carbon clusters	
77.	nanocomposite materials under visible light irradiation, H. Matsui, N. Bandou, S.	5.0
	Karuppuchamy, M.A. Hassan and M. Yoshihara, Ceramics International, 38	5.2
	(2012) 1605-1610.	
70	Visible light induced photocatalytic activity of Nb ₂ O ₅ /carbon cluster/Cr ₂ O ₃	
78.	composite materials, S. Karuppuchamy, H. Matsui, K. Kira, M.A. Hassan and	5.2
	M. Yoshihara, Ceramics International, 38 (2012) 1515-1521.	
79.	Synthesis and characterization of ZrO ₂ /MnO ₂ /carbon clusters composite	2.1
17.	materials, H. Matsui, N. Bando, S. Karuppuchamy, J-M. Jeong and M.	3.1
	Yoshihara, Superlattices Microstruct. 50 (2011) 427-436.	
	The Electronic behaviors of TiO ₂ /MnO ₂ /carbon clusters composite materials obtained by the calcination of a TiO(acac) ₂ /Mn(acac) ₃ /epoxy resin complex, H.	
80.	Matsui, Y. Saito, S. Karuppuchamy and M. Yoshihara, <i>Curr. Appl. Phys.</i> , 9	2.4
	(2009)1203-1209.	
	Synthesis and characterization of MoO ₃ /carbon clusters/ZrO ₂ composite	
81.	materials, H. Matsui, A. Ishiko, S. Karuppuchamy and M. Yoshihara, J. Alloy.	6.2
	Comp., 473 (2009) L33-L38.	
	The electronic behavior of calcined material obtained from an (Yttrium-O-	
82.	phenylene-O)-(Ytterbium-O-phenylene-O) hybrid copolymer, H. Matsui, S.	6.2
	Yamamoto, R. Ito, S. Karuppuchamy and M. Yoshihara, J. Alloy. Comp., 472	U. 2
	(2009) L13-L17.	
83.	Uniform coating of crystalline TiO_2 film on large area steel plates by the	• •
03.	electrochemical deposition with a staged pulse current, N. Suzuki, S.	2.4
	Karuppuchamy and S. Ito, J. Appl. Electro-chem., 39 (2009) 141-146.	
84.	The electronic behavior of $V_2O_3/TiO_2/Carbon$ clusters composite materials	6.2
1	obtained by the calcination of a $V(acac)_3$ / TiO(acac) ₂ /polyacrylic acid complex,	

	H. Matsui, T. Okajima, S. Karuppuchamy and M. Yoshihara, <i>J. Alloy. Comp.</i> , 468 (2009) L27-L32.	
85.	Synthesis and characterization of TiO ₂ /MoO ₃ /Carbon clusters composite material, H. Matsui, S. Nagano, S. Karuppuchamy and M. Yoshihara, <i>Curr. Appl. Phys.</i> , 9 (2009) 561-566.	2.4
86.	The electronic behaviors of visible light sensitiveNb ₂ O ₅ /Cr ₂ O ₃ /Carbon cluster composite materials, H. Matsui, K. Kira, S. Karuppuchamy and M. Yoshihara, <i>Curr. Appl. Phys.</i> , 9 (2009) 592-597.	2.4
87.	Synthesis and characterization of Ta ₂ O ₅ /HfO ₂ /Carbon clusters composite materials, K. Miyazaki, H. Matsui, S. Karuppuchamy , J. Uchizumi, S. Ito and M. Yoshihara, <i>Mater. Chem. Phys.</i> , <i>113</i> (2009) 36-41.	5.08
88.	Synthesis and photocatalytic activities of MnO ₂ -loaded Nb ₂ O ₅ /Carbon clusters composite material, H. Miyazaki, H. Matsui, T. Kuwamoto, S. Ito, S. Karuppuchamy and M. Yoshihara, <i>Micro. Meso. Mater.</i> 118 (2009) 518-522.	5.2
89.	Synthesis and electronic behaviors of Ce _{0.5} Hf _{0.5} O ₂ /Carbon clusters composite materials, H. Miyazaki, H. Matsui, H. Kitakaze, S. Karuppuchamy , S. Ito and M. Yoshihara, <i>Mater. Chem. Phys.</i> , <i>113</i> (2009) 21-25.	5.08
90.	The electronic behavior of calcined material obtained from a Manganese-O- phenylene - S-Rhenium-S-phenylene hybrid copolymer, H. Matsui, T. Kuroda, T. Kawahara, D. Katayama, S. Karuppuchamy and M. Yoshihara, <i>Ceramics</i> <i>International</i> , <i>35</i> (2009) 87-92.	5.2
91.	Electronic behavior of carbon clusters/hafnium oxide composite material, H. Matsui, T. Kuroda, T. Kawahara, S. Karuppuchamy , R. Kudo and M. Yoshihara, <i>Curr. Appl. Phys.</i> , 9 (2009) 263-267.	2.4
92.	A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low-temperature, S. Karuppuchamy , N. Suzuki, S. Ito and T. Endo, <i>Curr. Appl. Phys.</i> , 9 (2009) 243-248.	2.4
93.	Electronic behavior of visible light sensitive ZrO ₂ /Cr ₂ O ₃ /Carbon clusters composite materials, H. Miyazaki, H. Matsui, Y. Kita, S. Karuppuchamy , S. Ito and M. Yoshihara, <i>Curr. Appl. Phys.</i> , 9 (2009) 155-160.	2.4
94.	Electronic behavior of calcined material from 2,2-diphenylphosphino-1,1- binaphthyldichloro palladium, S. Yamamoto, H. Matsui, T. Okajima, S. Karuppuchamy and M. Yoshihara, <i>Solid State Commun.</i> , 148 (2008) 274-278.	2.1
95.	Synthesis and electronic behaviors of TiO ₂ /carbon clusters/Cr ₂ O ₃ composite materials, H. Miyazaki, H. Matsui, T. Nagano, S. Karuppuchamy , S. Ito and M. Yoshihara, <i>Appl. Surf. Sci.</i> , 254 (2008) 7365-7369.	6.7
96.	Electronic behaviors of calcined materials from Samarium-O-aryl moiety hybrid copolymers, H. Matsui, T. Kawahara, R. Kudo, M. Uda, S. Karuppuchamy and M. Yoshihara, <i>J. Alloy. Comp.</i> , 462 (2008) L20-L23.	6.2
97.	Electronic behavior of calcined material obtained by microwave treatment of a Tin-O- phenylene-O-hybrid copolymer, H. Matsui, T. Kuroda, T. Nishio, T. Kawahara, S. Karuppuchamy and M. Yoshihara, <i>Vacuum, 82 (2008) 1172-1176</i> .	4.25
98.	Synthesis of a net-worked Strontium-O-phenylene-S-tellurium hybrid copolymer having a two-step electron transfer nature, T. Kawahara, H. Matsui, K. Otsuki, S. Karuppuchamy, K. Yokoyama and M. Yoshihara, <i>Des. Monomers Polym.</i> 11 (2008) 47-55.	1.75
99.	Electronic behavior of calcined material from a Gallium-N-phenylene-N hybrid copolymer, H. Matsui, S. Yamamoto, T. Hama, S. Karuppuchamy and M.	5.6

-		
	Yoshihara, Mater. Res. Bull., 43/1, (2008) 104-110.	
100	Cathodic electrodeposition of nanoporous ZnO thin films and their super-	
100.	hydrophilic properties, S. Karuppuchamy and S. Ito, Vacuum, 82 (2008) 547-	4.25
	550.	
	Electronic behavior of calcined material obtained from a Tantalum-O-phenylene-	
101.	O hybrid copolymer, H. Miyazaki, H. Matsui, S. Karuppuchamy, R. Kudo, S.	_
	Ito and M. Yoshihara, J. Chem. Eng. Jpn., 40 (2007) 1072-1075.	
	Syntheses and electronic behaviors of networked alternating aluminum-organic	
102.	moiety hybrid copolymers, H. Matsui, R. Kudo, T. Kawahara, S.	
102.	Karuppuchamy and M. Yoshihara, J. Inorg. Organomet. Polym. 17, (2007) 661-	4
	664.	
	Electronic behavior of calcined material from a (Niobium-O- phenylene-S)-	
100	(cadmium-S-phenylene-O) hybrid copolymer, S. Yamamoto, H. Matsui, K.	
103.	Matoba, S. Karuppuchamy and M. Yoshihara, <i>J. Jpn. Soc. Colour Mater.</i> , 80(6)	_
	(2007) 241-245.	
104.	Electronic behavior of calcined materials from SnO ₂ hydrosol / starch composite	1 (0
1011	materials, H. Matsui, S. Karuppuchamy, J. Yamaguchi and M. Yoshihara,	4.68
	J.Photochem. Photobio. A. Chem., 189, (2007) 280-285.	
105.	Electron transfer behavior of calcined material from a samarium-O-phenylene-S-	7 00
105.	nickel-S-phenylene-O-hybrid copolymer, H. Matsui, S. Yamamoto, Y. Izawa, S.	5.08
	Karuppuchamy and M. Yoshihara, <i>Mater. Chem. Phys.</i> , 103, (2007) 127-131.	
106.	Electronic behavior of WO ₂ /Carbon clusters composite materials, H. Matsui, S.	
100.	Yamamoto, T. Sasai, S. Karuppuchamy and M. Yoshihara, <i>Electrochemistry</i> ,	2.5
	75, (2007) 345-348.	
	The electronic behaviors of calcined materials from a (S-Nickel-S-phenylene-O) -	
107.	strontium -(O-phenylene-S-Selenium-S) hybrid copolymer, T. Furukawa, H.	2.1
	Matsui, H. Hasegawa, S. Karuppuchamy and M. Yoshihara, Solid State	2.1
	<i>Commun.</i> , 142, (2007) 99-103.	
	Electronic properties of calcined materials from a Scandium-O-phenylene-O-	
108.	Yttrium-O- phenylene hybrid copolymer, T. Kawahara, T. Kuroda, H. Matsui, M.	4.5
	Mishima, S. Karuppuchamy, Y. Seguchi and M. Yoshihara, J. Mater. Sci., 42,	т.5
	(2007) 3708-3713.	
100	Electronic behavior of calcined material from [tetra (2,4,6-trimethylphenylthio)]	
109.	tin, S. Yamamoto, H. Matsui, Y. Kanae, S. Karuppuchamy, and M. Yoshihara,	0.87
	J. Chem. Eng. Jpn., 40, (2007) 329-332.	
	Electronic nature of vanadium nitride-carbon cluster composite materials obtained	
110.	by the calcination of oxovanadylphthalocyanine, T. Kawahara, H. Miyazaki, S.	4.25
	Karuppuchamy, H. Matsui, M. Ito and M. Yoshihara, Vacuum, 81 (2007) 680-	4.25
	685.	
	Physico-chemical, photoelectrochemical and photocatalytic properties of	
111.	electrosynthesized TiO_2 thin films, S. Karuppuchamy, M. Iwasakiand H.	4.25
	Minoura, Vacuum, 81, (2007) 708-712.	
	Electronic behavior of calcined materials obtained from an Osmium-S-phenylen-	
112.	S hybrid copolymer, H. Matsui, T. Kuroda, S. Karuppuchamy, R. Kudou, S.	3.1
	Eguma and M. Yoshihara, Mater. Tech., 24, (2006) 308-312.	
	Electronic behavior of niobium oxide-carbon cluster composite material obtained	
113.	by calcinations of a Niobium-O-phenylene-O-hybrid copolymer, T. Kawahara, H.	3.1
	Miyazaki, H. Matsui, R. Kudou, S. Karuppuchamy and M. Yoshihara, <i>Mater.</i>	~~=

	Tech., 24, (2006) 253-255.	
	Blue emission of YMO ₄ :Eu ²⁺ (M=V, P) nanocrystals prepared through facile wet	
114.	process, M. Iwasaki, N. Yamashita, M. Taguchi, S. Karuppuchamy, S. Ito and	7.5
	W. Park, Nanophotonic Materials III, Ed. By Z. Gaburro and S. Cabrini (2006)	1.00
	6321041-6321049.	
115.	Electronic behavior of calcined material from a Tantalum-O-phenylene-S- Tin-S- phenylene-O hybrid copolymer, S. Yamamoto, H. Matsui, S. Ishiyama, S.	7.9
	Karuppuchamy and M. Yoshihara, <i>Mat. Sci. Eng. B.</i> , 135, (2006) 120-124.	1.7
	Electrochemical properties of electrosynthesized TiO_2 thin films, S .	
116.	Karuppuchamy, M. Iwasaki and H. Minoura, Appl. Surf. Sci., 253, (2006) 2924-	6.7
	2929.	
	Gold-silver alloy nanowires electrochemically grown in the nanopores of	
117.	aluminum anodic oxidation film from cyanide-free bath and their color properties,	0.1
	A. Yasui, T. Kanoh, M. Iwasaki, T. Kawahara, S. Karuppuchamy, H. Tada, and	0.1
	S. Ito, J. Surf. Finish. Soc. Jpn. 57, (2006) 670-675.	
118.	Multicolor anodized aluminum film with gold and silver nanorod array, A. Yasui,	
110.	T. Kawahara, M, Iwasaki, S. Karuppuchamy , H. Tada and S. Ito, J. Jpn. Soc.	_
	<i>Colour Mater.</i> ,79, (2006) 190-196. Electronic behavior of calcined material from a tellurium-S-phenylene-O-	
110	strontium-O-phenylene-S hybrid copolymer, H. Matsui, T. Kuroda, K. Otsuki, K.	
119.	Yokoyama, T. Kawahara, S. Karuppuchamy and M. Yoshihara, <i>TANSO</i> , 222,	0.1
	(2006) 114-118.	
120.	Synthesis of nano-particles of TiO_2 by simple aqueous route, S. Karuppuchamy	1.6
	and J. Jeong, J. Oleo Science, 55, (2006) 263-266.	1.6
101	A simple route to the synthesis of tetraalkylammonium cation modified inorganic	
121.	complexes, S. Karuppuchamy , N. Okada and M. Kurihara, <i>J. Oleo Science</i> , 55,	1.6
	(2006) 91-94. Photoinduced-hydrophilicity of titanium dioxide thin films deposited by cathodic	
122.	electrodeposition, S. Karuppuchamy , J. Jeong, D. P. Amalnerkar and H.	4.25
	Minoura, Vacuum, 80, (2006) 494-498.	7.25
	Blue emission of YMO ₄ : Eu_2^+ (M=V, P) nanocrystals prepared through facile wet	
123.	process, M. Iwasaki, N. Yamashita, M. Taguchi, S. Karuppuchamy, S. Ito and	75
1201	W. Park, Internationl Conference on Optics and Photonics 2006 (SPIE)	7.5
	(Nanophotonic Materials III), San Diego, CA, USA, Aug. 13, 2006.	
124	Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic	
124.	electrodeposition, S. Karuppuchamy and J. Jeong, <i>Mater. Chem. Phys.</i> 93 (2-3),	5.08
	(2005) 251-254.	
125.	An efficient dye-sensitized photoelectrochemical solar cell made from CaCO ₃ - coated TiO ₂ nanoporous film, N. Okada, S. Karuppuchamy and M. Kurihara,	1.6
	<i>Chem. Lett.</i> , (2005) 16-17.	1.0
	Electrochemical self-assembly of ZnO/SO ₃ EtPTCDI hybrid photoelectrodes, T.	
126.	Oekermann, S. Karuppuchamy, T. Yoshida, D. Schelettwein, D. Woehrle, and	3.9
	H. Minoura, J. Electrochem. Soc., 151(1), (2004) C62-C68.	
	Studies on electrodeposition of oxide semiconductor thin films and their	
127.	application to dye-sensitized solar cells, S. Karuppuchamy, Doctoral	_
	Dissertation, Gifu University, Gifu, Japan (2002).	
128.	Cathodic electrodeposition of oxide semiconductor thin films and their	3.2
	application to dye-sensitized solar cells, S. Karuppuchamy, K. Nonomura, T.	

	Yoshida, T. Sugiura and H. Minoura, Solid State Ionics, 151, (2002) 19-27.	
129.	Self-assembly of ZnO/Riboflavin 5'-phosphate thin films by one-step electrodeposition and its characterization, S. Karuppuchamy , T. Yoshida, T. Sugiura, and H. Minoura, <i>Thin Solid Films</i> , 397(1-2), (2001) 63-69.	2.1
130.	Cathodic electrodeposition of TiO ₂ thin films for dye-sensitized photoelectrochemical applications, S. Karuppuchamy , D.P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, <i>Chem. Lett.</i> , (2001) 78-79.	1.6
131.	Development of nickel composite coatings by electroless deposition method: A review, S. Karthikeyan, S. Karuppuchamy, A.P. Sakthivel, T. Vasudevan, K.N. Srinivasan, S. John, <i>J. Surf. Sci. Technol.</i> , <i>15</i> , (1999)116-124.	0.39
132.	Effect of organic additives on cadmium electrode in nickel-cadmium batteries, P. Sakthivel, S. Karuppuchamy , G. Paruthimal Kalaignan, T. Vasudevan, and N. Begam, <i>J. Surf. Sci. Technol.</i> , <i>12</i> , (1996) 54-62.	0.39

Resource Persons in Various Capacities

National Conferences	: 44
International Conferences	: 157
Invited Lectures	: 96

➤ Inaugural/Presidential Address : 84